Summary: | Nitrogen Catabolite Repression (NCR) is the regulatory pathway through which Saccharomyces cerevisiae reduces the expression of genes encoding components involved in the utilization of poor nitrogen sources when rich ones are available. Expression of NCR-sensitive genes is controlled by the negative regulator Ure2 and four DNA-binding GATA-like transcription factors: two activators (Gln3 and Gat1) and two repressors (Dal80 and Gzf3). In the presence of preferred nitrogen sources, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner, whereas upon growth under non-preferred nitrogen conditions, the GATA activators relocate to the nucleus and mediate the transcription of NCR-sensitive genes. Even though the Target of Rapamycin Complex 1 (TORC1) as well as several phosphatases are involved in regulating Gln3 and Gat1 subcellular localization, a detailed mechanistic understanding of the NCR process is still lacking. <p>In the first part of this work, we have shown that class C and D VPS (vacuolar protein sorting) components, involved in Golgi-to-vacuole vesicular trafficking, are required for intact Gat1 and Gln3 nuclear localization in response to TORC1-inhibiting rapamycin treatment or upon shifting cells from rich to poor nitrogen conditions. The requirements of Vps proteins for Gln3 function are media-specific: a requirement after rapamycin treatment was observed in minimal but not in rich medium. Moreover, we have seen that a significant fraction of Gat1, like Gln3, is associated with light intracellular membranes. These observations support the view that GATA factor regulation in response to nitrogen signals seems to occur at intracellular compartments.<p>In a second step, we confirmed an important role for the anabolic glutamate dehydrogenase (Gdh1) within NCR, through the control of Gat1 function. However, since we observed a strong correlation between the anabolic activity of Gdh1 and its NCR regulatory capacity, we do not exclude that an alteration of Gdh1-substrates or any other metabolite could be responsible for the phenotype exhibited by gdh1 mutants. We also showed that there is no simple and direct link between the intracellular levels of glutamine/glutamate (reported in the literature as signals for NCR), TORC1 activity and NCR. In conclusion, the mechanisms regulating the perception of the quality of the nitrogen sources are still not fully understood. <p>Several screens for multi-copy suppression of mutated phenotypes were conducted during this work and led to the identification of several elements (URE2, BAP2, STP2, GZF3 and KDX1) that could interfere with NCR-sensitive gene expression. Among these, the gene encoding the Kdx1 kinase was identified in two independent screens. <p>In the last part of this work, we uncovered a role for leucine in NCR signaling. We showed that the addition of leucine in the culture medium could impair Gat1-dependent expression of certain NCR genes, while leucine starvation had no effect at this level. The repressive effect of leucine appeared to involve elements of the SPS signaling pathway which is required for the induction of genes encoding amino acid transporters in response to extracellular amino acids. The mechanism(s) by which leucine regulates Gat1 function is still not fully clear and requires further investigation:La levure Saccharomyces cerevisiae adapte l’expression de ses gènes selon la disponibilité en azote dans son environnement au moyen d’un contrôle majeur appelé répression catabolique azotée (NCR, pour « nitrogen catabolite repression ». L’expression des gènes NCR est contrôlée par un régulateur négatif de type prion (Ure2) et quatre facteurs de transcription de type GATA :deux activateurs, Gat1 et Gln3 et deux répresseurs, Dal80 et Gzf3. Bien que le complexe TORC1 et les phosphatases qu’il régule soient impliquées dans la régulation NCR, le mécanisme précis par lequel la NCR se produit est loin d’être compris.<p>Dans la première partie de ce travail, nous avons montré que les composants VPS (vacuolar protein sorting) de classe C et D, impliqués dans le trafic vésiculaire entre le Golgi et la vacuole, sont requis pour que Gat1 et Gln3 rejoignent le noyau en réponse à un traitement par la rapamycine, un inhibiteur de TORC1. En accord avec cette observation, nous avons montré que Gat1, comme Gln3, est associé aux membranes intracellulaires légères. <p>Dans un second temps, nous avons confirmé un rôle important pour la glutamate déshydrogénase anabolique (Gdh1) au sein de la NCR, par l’intermédiaire du contrôle de la fonction de Gat1. Cependant, étant donné qu’il semble exister une forte corrélation entre l’activité anabolique de Gdh1 et sa capacité à réguler la NCR, nous n’excluons pas qu’une altération des substrats de Gdh1 ou de tout autre métabolite pourrait être responsable du phénotype observé du mutant gdh1. Nous avons également montré qu’il n’existait pas de lien simple et direct entre niveaux intracellulaires de glutamine/glutamate, activité de TORC1 et signalisation NCR. En conclusion, les mécanismes conditionnant la perception de la qualité de l’aliment azoté sont encore méconnus à ce jour. <p>Plusieurs cribles de suppression multicopie ont été menés pendant ce travail et ont conduit à l’identification de plusieurs éléments pouvant éventuellement intervenir dans la voie de signalisation NCR. Parmi ceux-ci, le gène codant pour la kinase KDX1 a été identifié à deux reprises. Nous avons caractérisé en détail le rôle qu’elle joue dans la régulation des gènes NCR.<p>Dans la dernière partie de ce travail, nous avons montré que l’addition de leucine dans le milieu de culture pouvait affecter l’expression Gat1-dépendante de certains gènes NCR, alors que par ailleurs une carence en leucine est sans effet à ce niveau. Cet effet de répression par la leucine semble nécessiter des éléments de la voie de signalisation SPS, requise pour l’induction, en réponse aux acides aminés extracellulaires, de gènes codant pour des transporteurs d’acides aminés. <p> === Doctorat en Sciences === info:eu-repo/semantics/nonPublished
|