SHAPE MEMORY BEHAVIOR OF SINGLE CRYSTAL AND POLYCRYSTALLINE Ni-RICH NiTiHf HIGH TEMPERATURE SHAPE MEMORY ALLOYS

NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their sh...

Full description

Bibliographic Details
Main Author: Saghaian, Sayed M.
Format: Others
Published: UKnowledge 2015
Subjects:
Online Access:http://uknowledge.uky.edu/me_etds/65
http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1060&context=me_etds
id ndltd-uky.edu-oai-uknowledge.uky.edu-me_etds-1060
record_format oai_dc
spelling ndltd-uky.edu-oai-uknowledge.uky.edu-me_etds-10602015-09-20T16:33:42Z SHAPE MEMORY BEHAVIOR OF SINGLE CRYSTAL AND POLYCRYSTALLINE Ni-RICH NiTiHf HIGH TEMPERATURE SHAPE MEMORY ALLOYS Saghaian, Sayed M. NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing. Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (~20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20–30 J cm– 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. Shape memory properties of polycrystalline Ni50.3Ti29.7Hf20 alloys were studied via thermal cycling under stress and isothermal stress cycling experiments in tension. Recoverable strain of ~5% was observed for the as-extruded samples while it was decreased to ~4% after aging due to the formation of precipitates. The aged alloys demonstrated near perfect shape memory effect under high tensile stress level of 700 MPa and perfect superelasticity at high temperatures up to 230 °C. Finally, the tensioncompression asymmetry observed in NiTiHf where recoverable tensile strain was higher than compressive strain. The shape memory properties of solutionized and aged Ni-rich Ni50.3Ti29.7Hf20 single crystals were investigated along the [001], [011], and [111] orientations in compression. [001]-oriented single crystals showed high dimensional stability under stress levels as high as 1500 MPa in both the solutionized and aged conditions, but with transformation strains of less than 2%. Perfect superelasticity with recoverable strain of more than 4% was observed for solutionized and 550 °C-3h aged single crystals along the [011] and [111] orientations, and general superelastic behavior was observed over a wide temperature range. The calculated transformation strains were higher than the experimentally observed strains since the calculated strains could not capture the formation of martensite plates with (001) compound twins. 2015-01-01T08:00:00Z text application/pdf http://uknowledge.uky.edu/me_etds/65 http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1060&context=me_etds Theses and Dissertations--Mechanical Engineering UKnowledge NiTiHf High Temperature Shape memory alloys Mechanical characterization High strength shape memory alloy orientation dependence of NiTiHf Applied Mechanics Other Materials Science and Engineering Structural Engineering Structures and Materials
collection NDLTD
format Others
sources NDLTD
topic NiTiHf
High Temperature Shape memory alloys
Mechanical characterization
High strength shape memory alloy
orientation dependence of NiTiHf
Applied Mechanics
Other Materials Science and Engineering
Structural Engineering
Structures and Materials
spellingShingle NiTiHf
High Temperature Shape memory alloys
Mechanical characterization
High strength shape memory alloy
orientation dependence of NiTiHf
Applied Mechanics
Other Materials Science and Engineering
Structural Engineering
Structures and Materials
Saghaian, Sayed M.
SHAPE MEMORY BEHAVIOR OF SINGLE CRYSTAL AND POLYCRYSTALLINE Ni-RICH NiTiHf HIGH TEMPERATURE SHAPE MEMORY ALLOYS
description NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing. Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (~20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20–30 J cm– 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. Shape memory properties of polycrystalline Ni50.3Ti29.7Hf20 alloys were studied via thermal cycling under stress and isothermal stress cycling experiments in tension. Recoverable strain of ~5% was observed for the as-extruded samples while it was decreased to ~4% after aging due to the formation of precipitates. The aged alloys demonstrated near perfect shape memory effect under high tensile stress level of 700 MPa and perfect superelasticity at high temperatures up to 230 °C. Finally, the tensioncompression asymmetry observed in NiTiHf where recoverable tensile strain was higher than compressive strain. The shape memory properties of solutionized and aged Ni-rich Ni50.3Ti29.7Hf20 single crystals were investigated along the [001], [011], and [111] orientations in compression. [001]-oriented single crystals showed high dimensional stability under stress levels as high as 1500 MPa in both the solutionized and aged conditions, but with transformation strains of less than 2%. Perfect superelasticity with recoverable strain of more than 4% was observed for solutionized and 550 °C-3h aged single crystals along the [011] and [111] orientations, and general superelastic behavior was observed over a wide temperature range. The calculated transformation strains were higher than the experimentally observed strains since the calculated strains could not capture the formation of martensite plates with (001) compound twins.
author Saghaian, Sayed M.
author_facet Saghaian, Sayed M.
author_sort Saghaian, Sayed M.
title SHAPE MEMORY BEHAVIOR OF SINGLE CRYSTAL AND POLYCRYSTALLINE Ni-RICH NiTiHf HIGH TEMPERATURE SHAPE MEMORY ALLOYS
title_short SHAPE MEMORY BEHAVIOR OF SINGLE CRYSTAL AND POLYCRYSTALLINE Ni-RICH NiTiHf HIGH TEMPERATURE SHAPE MEMORY ALLOYS
title_full SHAPE MEMORY BEHAVIOR OF SINGLE CRYSTAL AND POLYCRYSTALLINE Ni-RICH NiTiHf HIGH TEMPERATURE SHAPE MEMORY ALLOYS
title_fullStr SHAPE MEMORY BEHAVIOR OF SINGLE CRYSTAL AND POLYCRYSTALLINE Ni-RICH NiTiHf HIGH TEMPERATURE SHAPE MEMORY ALLOYS
title_full_unstemmed SHAPE MEMORY BEHAVIOR OF SINGLE CRYSTAL AND POLYCRYSTALLINE Ni-RICH NiTiHf HIGH TEMPERATURE SHAPE MEMORY ALLOYS
title_sort shape memory behavior of single crystal and polycrystalline ni-rich nitihf high temperature shape memory alloys
publisher UKnowledge
publishDate 2015
url http://uknowledge.uky.edu/me_etds/65
http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1060&context=me_etds
work_keys_str_mv AT saghaiansayedm shapememorybehaviorofsinglecrystalandpolycrystallinenirichnitihfhightemperatureshapememoryalloys
_version_ 1716819517945937920