THE h-VECTORS OF MATROIDS AND THE ARITHMETIC DEGREE OF SQUAREFREE STRONGLY STABLE IDEALS
Making use of algebraic and combinatorial techniques, we study two topics: the arithmetic degree of squarefree strongly stable ideals and the h-vectors of matroid complexes. For a squarefree monomial ideal, I, the arithmetic degree of I is the number of facets of the simplicial complex which has I a...
Main Author: | |
---|---|
Format: | Others |
Published: |
UKnowledge
2008
|
Subjects: | |
Online Access: | http://uknowledge.uky.edu/gradschool_diss/636 http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1639&context=gradschool_diss |
Summary: | Making use of algebraic and combinatorial techniques, we study two topics: the arithmetic degree of squarefree strongly stable ideals and the h-vectors of matroid complexes.
For a squarefree monomial ideal, I, the arithmetic degree of I is the number of facets of the simplicial complex which has I as its Stanley-Reisner ideal. We consider the case when I is squarefree strongly stable, in which case we give an exact formula for the arithmetic degree in terms of the minimal generators of I as well as a lower bound resembling that from the Multiplicity Conjecture. Using this, we can produce an upper bound on the number of minimal generators of any Cohen-Macaulay ideals with arbitrary codimension extending Dubreil’s theorem for codimension 2.
A matroid complex is a pure complex such that every restriction is again pure. It is a long-standing open problem to classify all possible h-vectors of such complexes. In the case when the complex has dimension 1 we completely resolve this question and we give some partial results for higher dimensions. We also prove the 1-dimensional case of a conjecture of Stanley that all matroid h-vectors are pure O-sequences. Finally, we completely characterize the Stanley-Reisner ideals of matroid complexes. |
---|