3D Body Tracking using Deep Learning
This thesis introduces a 3D body tracking system based on neutral networks and 3D geometry, which can robustly estimate body poses and accurate body joints. This system takes RGB-D data as input. Body poses and joints are firstly extracted from color image using deep learning approach. The estimated...
Main Author: | |
---|---|
Format: | Others |
Published: |
UKnowledge
2017
|
Subjects: | |
Online Access: | http://uknowledge.uky.edu/cs_etds/59 http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1064&context=cs_etds |
id |
ndltd-uky.edu-oai-uknowledge.uky.edu-cs_etds-1064 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-uky.edu-oai-uknowledge.uky.edu-cs_etds-10642017-08-22T16:58:39Z 3D Body Tracking using Deep Learning Xu, Qingguo This thesis introduces a 3D body tracking system based on neutral networks and 3D geometry, which can robustly estimate body poses and accurate body joints. This system takes RGB-D data as input. Body poses and joints are firstly extracted from color image using deep learning approach. The estimated joints and skeletons are further translated to 3D space by using camera calibration information. This system is running at the rate of 3 4 frames per second. It can be used to any RGB-D sensors, such as Kinect, Intel RealSense [14] or any customized system with color depth calibrated. Comparing to the sate-of-art 3D body tracking system, this system is more robust, and can get much more accurate joints locations, which will benefits projects require precise joints, such as virtual try-on, body measure, real-time avatar driven. 2017-01-01T08:00:00Z text application/pdf http://uknowledge.uky.edu/cs_etds/59 http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1064&context=cs_etds Theses and Dissertations--Computer Science UKnowledge 3D body tracking deep learning Caffe Computer Engineering |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
3D body tracking deep learning Caffe Computer Engineering |
spellingShingle |
3D body tracking deep learning Caffe Computer Engineering Xu, Qingguo 3D Body Tracking using Deep Learning |
description |
This thesis introduces a 3D body tracking system based on neutral networks and 3D geometry, which can robustly estimate body poses and accurate body joints. This system takes RGB-D data as input. Body poses and joints are firstly extracted from color image using deep learning approach. The estimated joints and skeletons are further translated to 3D space by using camera calibration information. This system is running at the rate of 3 4 frames per second. It can be used to any RGB-D sensors, such as Kinect, Intel RealSense [14] or any customized system with color depth calibrated. Comparing to the sate-of-art 3D body tracking system, this system is more robust, and can get much more accurate joints locations, which will benefits projects require precise joints, such as virtual try-on, body measure, real-time avatar driven. |
author |
Xu, Qingguo |
author_facet |
Xu, Qingguo |
author_sort |
Xu, Qingguo |
title |
3D Body Tracking using Deep Learning |
title_short |
3D Body Tracking using Deep Learning |
title_full |
3D Body Tracking using Deep Learning |
title_fullStr |
3D Body Tracking using Deep Learning |
title_full_unstemmed |
3D Body Tracking using Deep Learning |
title_sort |
3d body tracking using deep learning |
publisher |
UKnowledge |
publishDate |
2017 |
url |
http://uknowledge.uky.edu/cs_etds/59 http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1064&context=cs_etds |
work_keys_str_mv |
AT xuqingguo 3dbodytrackingusingdeeplearning |
_version_ |
1718518375968145408 |