MIXED MATRIX FLAT SHEET AND HOLLOW FIBER MEMBRANES FOR GAS SEPARATION APPLICATIONS

Mixed matrix membranes (MMM) offer one potential path toward exceeding the Robeson upper bound of selectivity versus permeability for gas separation performance while maintaining the benefits of solution processing. Many inorganic materials, such as zeolites, metal-organic frameworks, or carbon nano...

Full description

Bibliographic Details
Main Author: Linck, Nicholas W.
Format: Others
Published: UKnowledge 2018
Subjects:
Online Access:https://uknowledge.uky.edu/cme_etds/89
https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1093&context=cme_etds
id ndltd-uky.edu-oai-uknowledge.uky.edu-cme_etds-1093
record_format oai_dc
spelling ndltd-uky.edu-oai-uknowledge.uky.edu-cme_etds-10932019-10-16T04:26:39Z MIXED MATRIX FLAT SHEET AND HOLLOW FIBER MEMBRANES FOR GAS SEPARATION APPLICATIONS Linck, Nicholas W. Mixed matrix membranes (MMM) offer one potential path toward exceeding the Robeson upper bound of selectivity versus permeability for gas separation performance while maintaining the benefits of solution processing. Many inorganic materials, such as zeolites, metal-organic frameworks, or carbon nanotubes, can function as molecular sieves, but as stand-alone membranes are brittle and difficult to manufacture. Incorporating them into a more robust polymeric membrane matrix has the potential to mitigate this issue. In this work, phase inversion polymer solution processing for the fabrication and testing of asymmetric flat sheet mixed matrix membranes was employed with CVD-derived multiwall carbon nanotubes (MWCNTs) dispersed in a polyethersulfone (PES) matrix. The effect of MWCNT loading on membrane separation performance was examined. Notably, a distinct enhancement in selectivity was measured for several gas pairs (including O2/N2) at relatively low MWCNT loading, with a peak in selectivity observed at 0.1 wt% loading relative to PES. In addition, no post-treatment (e.g. PDMS caulking) was required to achieve selectivity in these membranes. In contrast, neat PES membranes and those containing greater than 0.5 wt.% MWCNT showed gas selectivity characteristic of Knudsen diffusion through pinhole defects. These results suggested that at low loading, the presence of MWCNTs suppressed the formation of surface defects in the selective layer in flat sheet mixed matrix membranes. Additionally, a bench-scale, single-filament hollow fiber membrane spinning line was designed and purpose-built at the University of Kentucky Center for Applied Energy Research (CAER). Hollow fiber membrane spinning capability was developed using polyethersulfone (PES) solution dopes, and the process was expanded to include polysulfone (PSf) as well as mixed matrix membranes. The effects of key processing parameters, including the ratio of bore to dope velocities, the spinning air gap length, and the draw-down ratio, were systematically investigated. Finally, direct hollow fiber analogues to flat sheet mixed matrix membranes were characterized. Consistent with the flat sheet experiments, the mixed matrix hollow fiber membranes showed a local maximum in selectivity at a nominal loading of 0.1 wt.% MWCNT relative to the polymer, suggesting that the pinhole suppression effect introduced by MWCNTs was not limited to flat sheet membrane casting. The development of asymmetric hollow fiber mixed matrix membrane processing and testing capability at the UK Center for Applied Energy Research provides a platform for the further development of gas separation membranes. Using the tools developed through this work, it is possible to further push the frontiers of mixed matrix gas separation by expanding the capability to include more polymers, inorganic fillers, and post treatment processes which previously have been focused primarily on the flat sheet membrane geometry. 2018-01-01T08:00:00Z text application/pdf https://uknowledge.uky.edu/cme_etds/89 https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1093&context=cme_etds Theses and Dissertations--Chemical and Materials Engineering UKnowledge Hollow fiber membranes mixed matrix membranes gas separation carbon nanotubes polyethersulfone Membrane Science Polymer and Organic Materials
collection NDLTD
format Others
sources NDLTD
topic Hollow fiber membranes
mixed matrix membranes
gas separation
carbon nanotubes
polyethersulfone
Membrane Science
Polymer and Organic Materials
spellingShingle Hollow fiber membranes
mixed matrix membranes
gas separation
carbon nanotubes
polyethersulfone
Membrane Science
Polymer and Organic Materials
Linck, Nicholas W.
MIXED MATRIX FLAT SHEET AND HOLLOW FIBER MEMBRANES FOR GAS SEPARATION APPLICATIONS
description Mixed matrix membranes (MMM) offer one potential path toward exceeding the Robeson upper bound of selectivity versus permeability for gas separation performance while maintaining the benefits of solution processing. Many inorganic materials, such as zeolites, metal-organic frameworks, or carbon nanotubes, can function as molecular sieves, but as stand-alone membranes are brittle and difficult to manufacture. Incorporating them into a more robust polymeric membrane matrix has the potential to mitigate this issue. In this work, phase inversion polymer solution processing for the fabrication and testing of asymmetric flat sheet mixed matrix membranes was employed with CVD-derived multiwall carbon nanotubes (MWCNTs) dispersed in a polyethersulfone (PES) matrix. The effect of MWCNT loading on membrane separation performance was examined. Notably, a distinct enhancement in selectivity was measured for several gas pairs (including O2/N2) at relatively low MWCNT loading, with a peak in selectivity observed at 0.1 wt% loading relative to PES. In addition, no post-treatment (e.g. PDMS caulking) was required to achieve selectivity in these membranes. In contrast, neat PES membranes and those containing greater than 0.5 wt.% MWCNT showed gas selectivity characteristic of Knudsen diffusion through pinhole defects. These results suggested that at low loading, the presence of MWCNTs suppressed the formation of surface defects in the selective layer in flat sheet mixed matrix membranes. Additionally, a bench-scale, single-filament hollow fiber membrane spinning line was designed and purpose-built at the University of Kentucky Center for Applied Energy Research (CAER). Hollow fiber membrane spinning capability was developed using polyethersulfone (PES) solution dopes, and the process was expanded to include polysulfone (PSf) as well as mixed matrix membranes. The effects of key processing parameters, including the ratio of bore to dope velocities, the spinning air gap length, and the draw-down ratio, were systematically investigated. Finally, direct hollow fiber analogues to flat sheet mixed matrix membranes were characterized. Consistent with the flat sheet experiments, the mixed matrix hollow fiber membranes showed a local maximum in selectivity at a nominal loading of 0.1 wt.% MWCNT relative to the polymer, suggesting that the pinhole suppression effect introduced by MWCNTs was not limited to flat sheet membrane casting. The development of asymmetric hollow fiber mixed matrix membrane processing and testing capability at the UK Center for Applied Energy Research provides a platform for the further development of gas separation membranes. Using the tools developed through this work, it is possible to further push the frontiers of mixed matrix gas separation by expanding the capability to include more polymers, inorganic fillers, and post treatment processes which previously have been focused primarily on the flat sheet membrane geometry.
author Linck, Nicholas W.
author_facet Linck, Nicholas W.
author_sort Linck, Nicholas W.
title MIXED MATRIX FLAT SHEET AND HOLLOW FIBER MEMBRANES FOR GAS SEPARATION APPLICATIONS
title_short MIXED MATRIX FLAT SHEET AND HOLLOW FIBER MEMBRANES FOR GAS SEPARATION APPLICATIONS
title_full MIXED MATRIX FLAT SHEET AND HOLLOW FIBER MEMBRANES FOR GAS SEPARATION APPLICATIONS
title_fullStr MIXED MATRIX FLAT SHEET AND HOLLOW FIBER MEMBRANES FOR GAS SEPARATION APPLICATIONS
title_full_unstemmed MIXED MATRIX FLAT SHEET AND HOLLOW FIBER MEMBRANES FOR GAS SEPARATION APPLICATIONS
title_sort mixed matrix flat sheet and hollow fiber membranes for gas separation applications
publisher UKnowledge
publishDate 2018
url https://uknowledge.uky.edu/cme_etds/89
https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1093&context=cme_etds
work_keys_str_mv AT lincknicholasw mixedmatrixflatsheetandhollowfibermembranesforgasseparationapplications
_version_ 1719269152094420992