On the parallelization of network diffusion models
In this thesis, we investigate methods by which discrete event network diffusion simulators may execute without the restriction of lockstep or near lockstep synchronicity. We develop a discrete event simulator that allows free clock drift between threads, develop a differential equations model to ap...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
University of Iowa
2017
|
Subjects: | |
Online Access: | https://ir.uiowa.edu/etd/5831 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=7309&context=etd |
Summary: | In this thesis, we investigate methods by which discrete event network diffusion simulators may execute without the restriction of lockstep or near lockstep synchronicity. We develop a discrete event simulator that allows free clock drift between threads, develop a differential equations model to approximate communication cost of such a simulator, and propose an algorithm by which we leverage information gathered in the natural course of simulation to redistribute agents to parallel threads such that the burden of communication is lowered during future replicates. |
---|