The role of complement component C5a in nociceptive sensitization

The complement system is a principal component of innate immunity. Recent studies have underscored the importance of C5a and other complement components in inflammatory and neuropathic pain, although the underlying mechanisms are largely unknown. In particular, it is unclear how the complement syste...

Full description

Bibliographic Details
Main Author: Warwick, Charles A.
Other Authors: Usachev, Yuriy M.
Format: Others
Language:English
Published: University of Iowa 2017
Subjects:
C5a
Online Access:https://ir.uiowa.edu/etd/5676
https://ir.uiowa.edu/cgi/viewcontent.cgi?article=7156&context=etd
Description
Summary:The complement system is a principal component of innate immunity. Recent studies have underscored the importance of C5a and other complement components in inflammatory and neuropathic pain, although the underlying mechanisms are largely unknown. In particular, it is unclear how the complement system communicates with nociceptors and which ion channels and receptors are involved. Here we demonstrate that inflammatory thermal and mechanical hyperalgesia induced by complete Freund’s adjuvant were accompanied by C5a upregulation and were markedly reduced by C5a receptor (C5aR1) knockout (KO) or treatment with the C5aR1 antagonist PMX53. Direct administration of C5a into the mouse hindpaw produced strong thermal and mechanical hyperalgesia, an effect that was absent in TRPV1 KO mice, and was blocked by the TRPV1 antagonist AMG9810. Immunohistochemistry of mouse plantar skin showed prominent expression of C5aR1 in macrophages. Additionally, C5a evoked strong Ca2+ mobilization in macrophages. Macrophage depletion in transgenic macrophage Fas-induced apoptosis (MAFIA) mice abolished C5a-dependent thermal and mechanical hyperalgesia. Examination of inflammatory mediators following C5a injection revealed a rapid upregulation of nerve growth factor (NGF), a mediator known to sensitize TRPV1. Pre-injection of an NGF-neutralizing antibody or Trk inhibitor GNF-5837 prevented C5a-induced thermal hyperalgesia. Notably, NGF-induced thermal hyperalgesia was unaffected by macrophage depletion. Collectively, these results suggest that C5a induces thermal and mechanical hyperalgesia by triggering macrophage-dependent signaling that involves mobilization of NGF and NGF-dependent sensitization of TRPV1. Our findings highlight the importance of macrophage-to-neuron signaling in pain processing and identify C5a, NGF and TRPV1 as key players in this cross-cellular communication.