Off-the-grid compressive imaging
In many practical imaging scenarios, including computed tomography and magnetic resonance imaging (MRI), the goal is to reconstruct an image from few of its Fourier domain samples. Many state-of-the-art reconstruction techniques, such as total variation minimizati...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
University of Iowa
2016
|
Subjects: | |
Online Access: | https://ir.uiowa.edu/etd/2126 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=6675&context=etd |
id |
ndltd-uiowa.edu-oai-ir.uiowa.edu-etd-6675 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-uiowa.edu-oai-ir.uiowa.edu-etd-66752019-10-13T04:53:19Z Off-the-grid compressive imaging Ongie, Gregory John In many practical imaging scenarios, including computed tomography and magnetic resonance imaging (MRI), the goal is to reconstruct an image from few of its Fourier domain samples. Many state-of-the-art reconstruction techniques, such as total variation minimization, focus on discrete ‘on-the-grid” modelling of the problem both in spatial domain and Fourier domain. While such discrete-to-discrete models allow for fast algorithms, they can also result in sub-optimal sampling rates and reconstruction artifacts due to model mismatch. Instead, this thesis presents a framework for “off-the-grid”, i.e. continuous domain, recovery of piecewise smooth signals from an optimal number of Fourier samples. The main idea is to model the edge set of the image as the level-set curve of a continuous domain band-limited function. Sampling guarantees can be derived for this framework by investigating the algebraic geometry of these curves. This model is put into a robust and efficient optimization framework by posing signal recovery entirely in Fourier domain as a structured low-rank (SLR) matrix completion problem. An efficient algorithm for this problem is derived, which is an order of magnitude faster than previous approaches for SLR matrix completion. This SLR approach based on off-the-grid modeling shows significant improvement over standard discrete methods in the context of undersampled MRI reconstruction. 2016-08-01T07:00:00Z dissertation application/pdf https://ir.uiowa.edu/etd/2126 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=6675&context=etd Copyright 2016 Gregory John Ongie Theses and Dissertations eng University of IowaJacob, Mathews Compressed sensing Finite-rate-of-innovation MRI reconstruction Off-the-grid Super-resolution Applied Mathematics |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Compressed sensing Finite-rate-of-innovation MRI reconstruction Off-the-grid Super-resolution Applied Mathematics |
spellingShingle |
Compressed sensing Finite-rate-of-innovation MRI reconstruction Off-the-grid Super-resolution Applied Mathematics Ongie, Gregory John Off-the-grid compressive imaging |
description |
In many practical imaging scenarios, including computed tomography and magnetic resonance imaging (MRI), the goal is to reconstruct an image from few of its Fourier domain samples. Many state-of-the-art reconstruction techniques, such as total variation minimization, focus on discrete ‘on-the-grid” modelling of the problem both in spatial domain and Fourier domain. While such discrete-to-discrete models allow for fast algorithms, they can also result in sub-optimal sampling rates and reconstruction artifacts due to model mismatch. Instead, this thesis presents a framework for “off-the-grid”, i.e. continuous domain, recovery of piecewise smooth signals from an optimal number of Fourier samples. The main idea is to model the edge set of the image as the level-set curve of a continuous domain band-limited function. Sampling guarantees can be derived for this framework by investigating the algebraic geometry of these curves. This model is put into a robust and efficient optimization framework by posing signal recovery entirely in Fourier domain as a structured low-rank (SLR) matrix completion problem. An efficient algorithm for this problem is derived, which is an order of magnitude faster than previous approaches for SLR matrix completion. This SLR approach based on off-the-grid modeling shows significant improvement over standard discrete methods in the context of undersampled MRI reconstruction. |
author2 |
Jacob, Mathews |
author_facet |
Jacob, Mathews Ongie, Gregory John |
author |
Ongie, Gregory John |
author_sort |
Ongie, Gregory John |
title |
Off-the-grid compressive imaging |
title_short |
Off-the-grid compressive imaging |
title_full |
Off-the-grid compressive imaging |
title_fullStr |
Off-the-grid compressive imaging |
title_full_unstemmed |
Off-the-grid compressive imaging |
title_sort |
off-the-grid compressive imaging |
publisher |
University of Iowa |
publishDate |
2016 |
url |
https://ir.uiowa.edu/etd/2126 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=6675&context=etd |
work_keys_str_mv |
AT ongiegregoryjohn offthegridcompressiveimaging |
_version_ |
1719265306164068352 |