Cardiovascular end-organ damage in response to increased blood pressure variability : impact of oxidative stress

Baroreflex sensitivity (BRS) is often reduced in elderly populations and patients with chronic cardiovascular diseases leading to a concomitant rise in blood pressure variability (BPV) that is associated with increased cardiovascular related morbidity and mortality. Thus, there is a need to better u...

Full description

Bibliographic Details
Main Author: Rarick, Kevin Richard
Other Authors: Stauss, Harald M.
Format: Others
Language:English
Published: University of Iowa 2012
Subjects:
Online Access:https://ir.uiowa.edu/etd/3370
https://ir.uiowa.edu/cgi/viewcontent.cgi?article=3315&context=etd
id ndltd-uiowa.edu-oai-ir.uiowa.edu-etd-3315
record_format oai_dc
spelling ndltd-uiowa.edu-oai-ir.uiowa.edu-etd-33152019-10-13T04:30:48Z Cardiovascular end-organ damage in response to increased blood pressure variability : impact of oxidative stress Rarick, Kevin Richard Baroreflex sensitivity (BRS) is often reduced in elderly populations and patients with chronic cardiovascular diseases leading to a concomitant rise in blood pressure variability (BPV) that is associated with increased cardiovascular related morbidity and mortality. Thus, there is a need to better understand the mechanisms by which BPV causes cardiovascular end-organ damage. Animal studies using sinoaortic denervation (SAD) to increase BPV have demonstrated pathologic changes in the structure of the heart and blood vessels; however, there is a paucity of data investigating changes in functional measures of the heart and smaller, resistance type arteries. Furthermore, the pathogenic mechanisms involved in BPV-induced cardiovascular end-organ damage remain unknown. Baroreceptor denervation results in multiple cardiac stressors, many of which are associated with production of reactive oxygen species. Oxidative stress is known to promote cardiovascular end-organ damage but it is unclear if it plays a role in models of increased BPV. Thus, this study was designed to investigate the functional responses of smaller resistance type arteries and the heart to chronic exposure to enhanced BPV. In addition, the role of oxidative stress on these functional responses in a normotensive rat model of increased BPV was also investigated. Rats were subjected to either SAD surgery or a sham procedure and were observed for six weeks. To determine the role of oxidative stress, SAD rats were either treated with the superoxide dismutase mimetic tempol or left untreated. During the observation period, mean blood pressure remained normotensive, whereas baroreflex sensitivity was reduced and BPV increased two to three fold. Weekly in vivo assessment of vascular function of the long posterior ciliary artery (LPCA) demonstrated a significant reduction in endothelial-dependent dilation starting three weeks after SAD surgery compared to the sham group. Endothelial-independent dilation was not affected by SAD. Structural changes were not evident in the LPCA following SAD. However, structural (wall thickness, wall area, and wall area/lumen area ratio) and functional (strain and distensibility) changes were observed in the aorta. Cardiac structural (hypertrophy) and functional (diastolic dysfunction) effects were also evident following six weeks of increased BPV. Antioxidant treatment with tempol did not have any effect on the SAD-induced increase in BPV or decrease in BRS. Nevertheless, chronic tempol treatment prevented or reduced the cardiovascular end-organ damage (endothelial-dependent vascular dysfunction, decreased aortic distensibility, cardiac and vascular hypertrophy, and cardiac dysfunction) observed in the untreated SAD group. These findings suggest that the pathology observed following SAD is at least partly mediated by oxidative stress. Antioxidant treatment in patients with increased BPV (e.g., hypertension, diabetes, heart failure) may prevent or ameliorate cardiovascular end-organ damage and reduce the overall risk for cardiovascular disease events. 2012-07-01T07:00:00Z dissertation application/pdf https://ir.uiowa.edu/etd/3370 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=3315&context=etd Copyright 2012 Kevin Richard Rarick Theses and Dissertations eng University of IowaStauss, Harald M. Kregel, Kevin C. Antioxidant treatment Baroreflex sensitivity Blood pressure variability Cardiovascular remodeling Endothelial-dependent dilation Oxidative stress Systems and Integrative Physiology
collection NDLTD
language English
format Others
sources NDLTD
topic Antioxidant treatment
Baroreflex sensitivity
Blood pressure variability
Cardiovascular remodeling
Endothelial-dependent dilation
Oxidative stress
Systems and Integrative Physiology
spellingShingle Antioxidant treatment
Baroreflex sensitivity
Blood pressure variability
Cardiovascular remodeling
Endothelial-dependent dilation
Oxidative stress
Systems and Integrative Physiology
Rarick, Kevin Richard
Cardiovascular end-organ damage in response to increased blood pressure variability : impact of oxidative stress
description Baroreflex sensitivity (BRS) is often reduced in elderly populations and patients with chronic cardiovascular diseases leading to a concomitant rise in blood pressure variability (BPV) that is associated with increased cardiovascular related morbidity and mortality. Thus, there is a need to better understand the mechanisms by which BPV causes cardiovascular end-organ damage. Animal studies using sinoaortic denervation (SAD) to increase BPV have demonstrated pathologic changes in the structure of the heart and blood vessels; however, there is a paucity of data investigating changes in functional measures of the heart and smaller, resistance type arteries. Furthermore, the pathogenic mechanisms involved in BPV-induced cardiovascular end-organ damage remain unknown. Baroreceptor denervation results in multiple cardiac stressors, many of which are associated with production of reactive oxygen species. Oxidative stress is known to promote cardiovascular end-organ damage but it is unclear if it plays a role in models of increased BPV. Thus, this study was designed to investigate the functional responses of smaller resistance type arteries and the heart to chronic exposure to enhanced BPV. In addition, the role of oxidative stress on these functional responses in a normotensive rat model of increased BPV was also investigated. Rats were subjected to either SAD surgery or a sham procedure and were observed for six weeks. To determine the role of oxidative stress, SAD rats were either treated with the superoxide dismutase mimetic tempol or left untreated. During the observation period, mean blood pressure remained normotensive, whereas baroreflex sensitivity was reduced and BPV increased two to three fold. Weekly in vivo assessment of vascular function of the long posterior ciliary artery (LPCA) demonstrated a significant reduction in endothelial-dependent dilation starting three weeks after SAD surgery compared to the sham group. Endothelial-independent dilation was not affected by SAD. Structural changes were not evident in the LPCA following SAD. However, structural (wall thickness, wall area, and wall area/lumen area ratio) and functional (strain and distensibility) changes were observed in the aorta. Cardiac structural (hypertrophy) and functional (diastolic dysfunction) effects were also evident following six weeks of increased BPV. Antioxidant treatment with tempol did not have any effect on the SAD-induced increase in BPV or decrease in BRS. Nevertheless, chronic tempol treatment prevented or reduced the cardiovascular end-organ damage (endothelial-dependent vascular dysfunction, decreased aortic distensibility, cardiac and vascular hypertrophy, and cardiac dysfunction) observed in the untreated SAD group. These findings suggest that the pathology observed following SAD is at least partly mediated by oxidative stress. Antioxidant treatment in patients with increased BPV (e.g., hypertension, diabetes, heart failure) may prevent or ameliorate cardiovascular end-organ damage and reduce the overall risk for cardiovascular disease events.
author2 Stauss, Harald M.
author_facet Stauss, Harald M.
Rarick, Kevin Richard
author Rarick, Kevin Richard
author_sort Rarick, Kevin Richard
title Cardiovascular end-organ damage in response to increased blood pressure variability : impact of oxidative stress
title_short Cardiovascular end-organ damage in response to increased blood pressure variability : impact of oxidative stress
title_full Cardiovascular end-organ damage in response to increased blood pressure variability : impact of oxidative stress
title_fullStr Cardiovascular end-organ damage in response to increased blood pressure variability : impact of oxidative stress
title_full_unstemmed Cardiovascular end-organ damage in response to increased blood pressure variability : impact of oxidative stress
title_sort cardiovascular end-organ damage in response to increased blood pressure variability : impact of oxidative stress
publisher University of Iowa
publishDate 2012
url https://ir.uiowa.edu/etd/3370
https://ir.uiowa.edu/cgi/viewcontent.cgi?article=3315&context=etd
work_keys_str_mv AT rarickkevinrichard cardiovascularendorgandamageinresponsetoincreasedbloodpressurevariabilityimpactofoxidativestress
_version_ 1719264330031038464