Virtual pre-operative reconstruction planning for comminuted articular fractures
Highly comminuted intra-articular fractures are complex and difficult injuries to treat. Once emergent care is rendered, the definitive treatment objective is to restore the original anatomy while minimizing surgically induced trauma. Operations that use limited or percutaneous approaches help prese...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
University of Iowa
2010
|
Subjects: | |
Online Access: | https://ir.uiowa.edu/etd/2778 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=2677&context=etd |
id |
ndltd-uiowa.edu-oai-ir.uiowa.edu-etd-2677 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-uiowa.edu-oai-ir.uiowa.edu-etd-26772019-11-13T09:14:21Z Virtual pre-operative reconstruction planning for comminuted articular fractures Thomas, Thaddeus Paul Highly comminuted intra-articular fractures are complex and difficult injuries to treat. Once emergent care is rendered, the definitive treatment objective is to restore the original anatomy while minimizing surgically induced trauma. Operations that use limited or percutaneous approaches help preserve tissue vitality, but reduced visibility makes reconstruction more difficult. A pre-operative plan of how comminuted fragments would best be re-positioned to restore anatomy helps in executing a successful reduction. The objective of this work was to create new virtual fracture reconstruction technologies that would deliver that information for a clinical series of severe intra-articular fractures. As a step toward clinical application, algorithmic development benefits from the availability of more precise and controlled data. Therefore, this work first developed 3D puzzle solving methods in a surrogate platform not confounded by various in vivo complexities. Typical tibial plafond fracture fragmentation/dispersal patterns were generated with five identical replicas of human distal tibia anatomy that were machined from blocks of high-density polyetherurethane foam (bone fragmentation surrogate). Replicas were fractured using an instrumented drop tower and pre- and post-fracture geometries were obtained using laser scans and CT. A semi-automatic virtual reconstruction computer program aligned fragment native surfaces to a pre-fracture template. After effective reconstruction algorithms were created for the surrogate tibias, the next aim was to develop new algorithms that would accommodate confounding biologic factors and puzzle solve clinical fracture cases. First, a novel image analysis technique was developed to segment bone geometries from pre- and post-surgical reduction CT scans using a modified 3D watershed segmentation algorithm. Next, 3D puzzle solving algorithms were advanced to obtain fracture reconstructions in a series of highly comminuted tibial plafond fracture cases. Each tibia was methodically reconstructed by matching fragment native (periosteal and articular) surfaces to an intact template that was created from a mirror image of the healthy contralateral limb. Virtual reconstructions obtained for ten tibial plafond fracture cases had average alignment errors of 0.39±0.5 mm. These novel 3D puzzle solving methods are a significant advancement toward improving treatment by providing a powerful new tool for planning the surgical reconstruction of comminuted articular fractures. 2010-01-01T08:00:00Z dissertation application/pdf https://ir.uiowa.edu/etd/2778 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=2677&context=etd Copyright © 2010 Thaddeus Paul Thomas Theses and Dissertations eng University of IowaBrown, Thomas D. Fracture Intra-articular Orthopaedics Post-traumatic osteoarthritis Surgical Planning Biomedical Engineering and Bioengineering |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Fracture Intra-articular Orthopaedics Post-traumatic osteoarthritis Surgical Planning Biomedical Engineering and Bioengineering |
spellingShingle |
Fracture Intra-articular Orthopaedics Post-traumatic osteoarthritis Surgical Planning Biomedical Engineering and Bioengineering Thomas, Thaddeus Paul Virtual pre-operative reconstruction planning for comminuted articular fractures |
description |
Highly comminuted intra-articular fractures are complex and difficult injuries to treat. Once emergent care is rendered, the definitive treatment objective is to restore the original anatomy while minimizing surgically induced trauma. Operations that use limited or percutaneous approaches help preserve tissue vitality, but reduced visibility makes reconstruction more difficult. A pre-operative plan of how comminuted fragments would best be re-positioned to restore anatomy helps in executing a successful reduction. The objective of this work was to create new virtual fracture reconstruction technologies that would deliver that information for a clinical series of severe intra-articular fractures. As a step toward clinical application, algorithmic development benefits from the availability of more precise and controlled data. Therefore, this work first developed 3D puzzle solving methods in a surrogate platform not confounded by various in vivo complexities. Typical tibial plafond fracture fragmentation/dispersal patterns were generated with five identical replicas of human distal tibia anatomy that were machined from blocks of high-density polyetherurethane foam (bone fragmentation surrogate). Replicas were fractured using an instrumented drop tower and pre- and post-fracture geometries were obtained using laser scans and CT. A semi-automatic virtual reconstruction computer program aligned fragment native surfaces to a pre-fracture template. After effective reconstruction algorithms were created for the surrogate tibias, the next aim was to develop new algorithms that would accommodate confounding biologic factors and puzzle solve clinical fracture cases. First, a novel image analysis technique was developed to segment bone geometries from pre- and post-surgical reduction CT scans using a modified 3D watershed segmentation algorithm. Next, 3D puzzle solving algorithms were advanced to obtain fracture reconstructions in a series of highly comminuted tibial plafond fracture cases. Each tibia was methodically reconstructed by matching fragment native (periosteal and articular) surfaces to an intact template that was created from a mirror image of the healthy contralateral limb. Virtual reconstructions obtained for ten tibial plafond fracture cases had average alignment errors of 0.39±0.5 mm. These novel 3D puzzle solving methods are a significant advancement toward improving treatment by providing a powerful new tool for planning the surgical reconstruction of comminuted articular fractures. |
author2 |
Brown, Thomas D. |
author_facet |
Brown, Thomas D. Thomas, Thaddeus Paul |
author |
Thomas, Thaddeus Paul |
author_sort |
Thomas, Thaddeus Paul |
title |
Virtual pre-operative reconstruction planning for comminuted articular fractures |
title_short |
Virtual pre-operative reconstruction planning for comminuted articular fractures |
title_full |
Virtual pre-operative reconstruction planning for comminuted articular fractures |
title_fullStr |
Virtual pre-operative reconstruction planning for comminuted articular fractures |
title_full_unstemmed |
Virtual pre-operative reconstruction planning for comminuted articular fractures |
title_sort |
virtual pre-operative reconstruction planning for comminuted articular fractures |
publisher |
University of Iowa |
publishDate |
2010 |
url |
https://ir.uiowa.edu/etd/2778 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=2677&context=etd |
work_keys_str_mv |
AT thomasthaddeuspaul virtualpreoperativereconstructionplanningforcomminutedarticularfractures |
_version_ |
1719290803267829760 |