Biology of redox active endosomal signaling in response to Il-1-Beta

Interleukin-1-beta (IL-1β) is a potent proinflammatory cytokine. A primary outcome of IL-1β signaling is the activation of NFκB, a transcription factor that induces a large number of immune molecules, apoptotic factors, anti-apoptotic factors, and other transcription factors. Recent work has demonst...

Full description

Bibliographic Details
Main Author: Oakley, Fredrick Daniel
Other Authors: Engelhardt, John F.
Format: Others
Language:English
Published: University of Iowa 2011
Subjects:
Online Access:https://ir.uiowa.edu/etd/1045
https://ir.uiowa.edu/cgi/viewcontent.cgi?article=2430&context=etd
Description
Summary:Interleukin-1-beta (IL-1β) is a potent proinflammatory cytokine. A primary outcome of IL-1β signaling is the activation of NFκB, a transcription factor that induces a large number of immune molecules, apoptotic factors, anti-apoptotic factors, and other transcription factors. Recent work has demonstrated that the activation of NFκB involves a multistep redox-signaling cascade that requires endocytosis of the interleukin receptor (IL-1R1)/ligand pair and superoxide production by NADPH oxidase 2 (Nox2) within the resulting newly formed early endosome. Hydrogen peroxide produced by the rapid dismutation of superoxide is necessary for the subsequent downstream recruitment of IL-1R1 effectors (TRAF6, IKK kinases) and ultimately the activation of NFκB. In this thesis, I have further dissected the spatial and temporal events that coordinate signaling processes of the IL-1β pathway. Using a combination of biophotonic imaging, immunofluorescence imaging, and lipid raft density gradient isolation, I demonstrate that both Nox2 and IL-1R1 are constitutively present in lipid raft microdomains on the plasma membrane. Stimulation by IL-1β induces endocytosis of Nox2 and IL-1R1 from the plasma membrane into caveolin-1, lipid raft positive early endosomes. Further, inhibition of lipid raft mediated endocytosis or deletion of caveolin-1 inhibits activation of NFκB, by IL-1β. We have also identified Vav1 as the Rac1 guanine exchange factor that is recruited to caveolin-1 positive lipid rafts following IL-1β stimulation, and demonstrated that dominant negative Vav1 inhibits NFκB activation by IL-1β. Following this work, I utilized assays for redox sensitivity and mass spectrometry to demonstrate that C70, C73, and C105 are hydrogen peroxide sensitive cysteines within the RING domain of TRAF6. I further demonstrate that hydrogen peroxide does not alter the E3 ubiquitin ligase activity associated with the TRAF6 RING domain. My findings suggest that the redox sensitivity of the RING domain mediates TRAF6 recruitment to the receptor complex. This is supported by the observation that hydrogen peroxide treatment of TRAF6, but not early signaling effectors (IL-1R1, IRAK1, IRAK4, MyD88) mediates TRAF6 recruitment to the IL-1 receptor complex. Further, mutation of the identified redox sensitive cysteines inhibits IL-1β signaling and NFκB activation. This research has helped to refine the understanding of the IL-1β signaling pathway, and may ultimately lead to new therapeutic targets for controlling inflammation.