Inference and prediction in a multiple structural break model of economic time series
This thesis develops a new Bayesian approach to structural break modeling. The focuses of the approach are the modeling of in-sample structural breaks and forecasting time series allowing out-of-sample breaks. Our model has some desirable features. First, the number of regimes is not fixed and is tr...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
University of Iowa
2009
|
Subjects: | |
Online Access: | https://ir.uiowa.edu/etd/244 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=1429&context=etd |
id |
ndltd-uiowa.edu-oai-ir.uiowa.edu-etd-1429 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-uiowa.edu-oai-ir.uiowa.edu-etd-14292019-10-13T04:43:08Z Inference and prediction in a multiple structural break model of economic time series Jiang, Yu This thesis develops a new Bayesian approach to structural break modeling. The focuses of the approach are the modeling of in-sample structural breaks and forecasting time series allowing out-of-sample breaks. Our model has some desirable features. First, the number of regimes is not fixed and is treated as a random variable in our model. Second, our model adopts a hierarchical prior for regime coefficients, which allows for the regime coefficients of one regime to contain information about regime coefficients of other regimes. However, the regime coefficients can be analytically integrated out of the posterior distribution and therefore we only need to deal with one level of the hierarchy. Third, the implementation of our model is simple and the computational cost is low. Our model is applied to two different time series: S&P 500 monthly returns and U.S. real GDP quarterly growth rates. We linked breaks detected by our model to certain historical events. 2009-05-01T07:00:00Z dissertation application/pdf https://ir.uiowa.edu/etd/244 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=1429&context=etd Copyright 2009 Yu Jiang Theses and Dissertations eng University of IowaGeweke, John Markov Chain Monte Carlo Metropolis-Hastings Real GDP Growth S&P 500 Returns Structural Breaks Applied Mathematics |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Markov Chain Monte Carlo Metropolis-Hastings Real GDP Growth S&P 500 Returns Structural Breaks Applied Mathematics |
spellingShingle |
Markov Chain Monte Carlo Metropolis-Hastings Real GDP Growth S&P 500 Returns Structural Breaks Applied Mathematics Jiang, Yu Inference and prediction in a multiple structural break model of economic time series |
description |
This thesis develops a new Bayesian approach to structural break modeling. The focuses of the approach are the modeling of in-sample structural breaks and forecasting time series allowing out-of-sample breaks. Our model has some desirable features. First, the number of regimes is not fixed and is treated as a random variable in our model. Second, our model adopts a hierarchical prior for regime coefficients, which allows for the regime coefficients of one regime to contain information about regime coefficients of other regimes. However, the regime coefficients can be analytically integrated out of the posterior distribution and therefore we only need to deal with one level of the hierarchy. Third, the implementation of our model is simple and the computational cost is low. Our model is applied to two different time series: S&P 500 monthly returns and U.S. real GDP quarterly growth rates. We linked breaks detected by our model to certain historical events. |
author2 |
Geweke, John |
author_facet |
Geweke, John Jiang, Yu |
author |
Jiang, Yu |
author_sort |
Jiang, Yu |
title |
Inference and prediction in a multiple structural break model of economic time series |
title_short |
Inference and prediction in a multiple structural break model of economic time series |
title_full |
Inference and prediction in a multiple structural break model of economic time series |
title_fullStr |
Inference and prediction in a multiple structural break model of economic time series |
title_full_unstemmed |
Inference and prediction in a multiple structural break model of economic time series |
title_sort |
inference and prediction in a multiple structural break model of economic time series |
publisher |
University of Iowa |
publishDate |
2009 |
url |
https://ir.uiowa.edu/etd/244 https://ir.uiowa.edu/cgi/viewcontent.cgi?article=1429&context=etd |
work_keys_str_mv |
AT jiangyu inferenceandpredictioninamultiplestructuralbreakmodelofeconomictimeseries |
_version_ |
1719264650184359936 |