Modellierung, Simulation und Entwurf induktiv gekoppelter Transpondersysteme

Für die Simulation und den Entwurf von Transpondersystemen sind Modelle erforderlich, die direkt im Schaltungssimulator verwendet werden können. Zur Implementierung dieser Modelle bieten sich Beschreibungssprachen zur Modellierung analoger Systeme an, wohingegen vereinfachte Modelle eine erste Absch...

Full description

Bibliographic Details
Main Author: Soffke, Kai Oliver
Format: Others
Language:German
de
Published: 2007
Online Access:https://tuprints.ulb.tu-darmstadt.de/882/1/Dissertation_Soffke.pdf
Soffke, Kai Oliver <http://tuprints.ulb.tu-darmstadt.de/view/person/Soffke=3AKai_Oliver=3A=3A.html> (2007): Modellierung, Simulation und Entwurf induktiv gekoppelter Transpondersysteme.Darmstadt, Technische Universität, [Online-Edition: http://elib.tu-darmstadt.de/diss/000882 <http://elib.tu-darmstadt.de/diss/000882> <official_url>],[Ph.D. Thesis]
id ndltd-tu-darmstadt.de-oai-tuprints.ulb.tu-darmstadt.de-882
record_format oai_dc
collection NDLTD
language German
de
format Others
sources NDLTD
description Für die Simulation und den Entwurf von Transpondersystemen sind Modelle erforderlich, die direkt im Schaltungssimulator verwendet werden können. Zur Implementierung dieser Modelle bieten sich Beschreibungssprachen zur Modellierung analoger Systeme an, wohingegen vereinfachte Modelle eine erste Abschätzung des Systemverhaltens erlauben, ohne dass Simulationen durchgeführt werden müssen. Darüber hinaus stellt ein gutes Verständnis vom Verhalten der Antenne des Lesegerätes und dem prinzipiellen Einfluss ihrer Abmessungen eine Voraussetzung für den systematischen Entwurf solcher Systeme dar. Für induktiv gekoppelte Transpondersysteme kommen Schleifenantennen zum Einsatz, die durch die Serienschaltung zweier Widerstände und einer Spule modelliert werden können. Die Widerstände stellen zum einen die Verluste, die in der Antenne selbst entstehen, und zum anderen die abgestrahlte Leistung dar. Die Spule beschreibt die im Nahfeld gespeicherte Energie. Die Bestimmung der Induktivität und des Strahlungswiderstandes kann aus der von der Antenne erzeugten Feldverteilung erfolgen. Dabei wird zunächst nicht zwischen Nah- und Fernfeld unterschieden, sondern das tatsächlich erzeugte Feld bestimmt. Anhand dieser Ergebnisse lässt sich dann zeigen, dass der Ansprechbereich typischer Transponder in einem Gebiet um die Antenne liegt, in dem das erzeugte Feld durch eine Nahfeldnäherung ausreichend gut beschrieben ist. Die Induktivitätsbestimmung führt im Falle einer kreisförmigen Antenne zu elliptischen Integralen, die nicht geschlossen dargestellt werden können, so dass die Integrale numerisch gelöst werden müssen. Mit Hilfe der nichtlinearen Regression lassen sich schließlich mögliche Näherungformeln ableiten. Auch die Analyse des Strahlungswiderstandes führt zu einem Integral, das nicht geschlossen lösbar ist. Die Annahme, dass die Antenne elektrisch klein ist, liefert aber gleichzeitig eine Näherung für den Integranden, so dass eine geschlossene Darstellung des Strahlungswiderstandes möglich wird. Für die Verluste muss schließlich die Stromverteilung im Leiter bekannt sein. Aus der Stromverteilung ergibt sich das zugehörige Magnetfeld und aus beiden zusammen die Verlustleistung, welche proportional zum Hochfrequenzwiderstand des Leiters ist. Unter der Annahme der Anpassung der kreisförmigen Schleifenantenne an den Ausgangstreiber kann man eine optimale Antennengröße und ein Modell für die erreichbare Ansprechentfernung des Transponders ableiten. Es lässt sich darüber hinaus zeigen, dass bei einer vorgeschriebenen Beschränkung der Feldstärke, die in einer bestimmten Entfernung von der Lesegerätantenne herrscht, eine Erhöhung der Leistung bei gleichzeitiger Verringerung der Antennengröße keine Überschreitung der maximal erlaubten Feldstärke in der festgelegten Entfernung nach sich zieht und dennoch die Ansprechentfernung vergrößert wird. Allerdings gibt es für letztere eine theoretische Grenze. Aus dem gekoppelten System, bestehend aus Lesegerät und Transponder, kann die maximal übertragbare Leistung und die zugehörige optimale Schaltungskonfiguration ermittelt werden. Es zeigt sich, dass im Falle einer schwachen Kopplung diese beim Entwurf der Anpassnetzwerke vernachlässigt werden kann. Die Ergebnisse weichen dennoch nur minimal von der optimalen Lösung ab. Dies gilt zwar nur für eine schwache Kopplung, aber da diese für die Energieübertragung zum Transponder kritischer ist als eine starke Kopplung, ist es ausreichend, die Anpassung für diesen Fall zu optimieren. Die Modellierung des Gesamtsystems zur Integration in Schaltungssimulatoren erfolgt mit Hilfe der Hardwarebeschreibungssprache Verilog-A, die um Modelle auf der Basis ein- und auslaufender Wellen erweitert wird. Zu diesem Zweck kann eine weitere Disziplin hinzugefügt werden, welche die einlaufende Welle als Fluss und die Auslaufende als Potential darstellt. Ein entsprechendes Konvertermodul setzt den Strom und die Spannung an einem seiner beiden Tore auf die zugehörigen Wellengrößen am anderen Tor um. Zusätzlich wird ein Verbindungselement vorgestellt, welches sicherstellt, dass die auslaufenden Wellen eines Moduls die entsprechenden einlaufenden Wellen eines anderen angeschlossenen Moduls darstellen. Innerhalb dieses Rahmens können dann die eigentlichen Modelle direkt beschrieben werden. Die Ergebnisse werden auf ein praktisches Beispiel angewendet: Der Entwurf eines einfachen Transponders und die Simulation seines Verhaltens im Gesamtsystem, welches aus Lesegerät, gekoppelten Antennen und dem Transponder besteht. Der Entwurf des Transponders erfolgt dabei auf Transistorebene, wobei allerdings auch Dioden und passive Elemente zum Einsatz kommen. Die restlichen Komponenten des Systems liegen entweder als Verhaltensmodell oder in Form konkreter Schaltungen vor. Aufgrund der extrem geringen Fertigungskosten sind Massendruckverfahren zur Realisierung von Transpondern in gedruckter Elektronik sehr interessant. Beim Einsatz neuer Technologien zur Realisierung von Schaltungen und Systemen treten allerdings des öfteren Fragen zur Zuverlässigkeit auf. Aufbauend auf den Ideen von Neumanns werden die erreichbaren Zuverlässigkeiten beim Einsatz modularer Redundanz theoretisch untersucht und die Ergebnisse mit Hilfe von Monte-Carlo-Simulationen verifiziert. Anschließend wird eine Methode zur statistischen Beschreibung von Gatternetzwerken vorgestellt, die sowohl Aspekte der statistischen Analyse des Zeitverhaltens sowie eine statistische Betrachtung der Spannungsverläufe über der Zeit umfasst.
author Soffke, Kai Oliver
spellingShingle Soffke, Kai Oliver
Modellierung, Simulation und Entwurf induktiv gekoppelter Transpondersysteme
author_facet Soffke, Kai Oliver
author_sort Soffke, Kai Oliver
title Modellierung, Simulation und Entwurf induktiv gekoppelter Transpondersysteme
title_short Modellierung, Simulation und Entwurf induktiv gekoppelter Transpondersysteme
title_full Modellierung, Simulation und Entwurf induktiv gekoppelter Transpondersysteme
title_fullStr Modellierung, Simulation und Entwurf induktiv gekoppelter Transpondersysteme
title_full_unstemmed Modellierung, Simulation und Entwurf induktiv gekoppelter Transpondersysteme
title_sort modellierung, simulation und entwurf induktiv gekoppelter transpondersysteme
publishDate 2007
url https://tuprints.ulb.tu-darmstadt.de/882/1/Dissertation_Soffke.pdf
Soffke, Kai Oliver <http://tuprints.ulb.tu-darmstadt.de/view/person/Soffke=3AKai_Oliver=3A=3A.html> (2007): Modellierung, Simulation und Entwurf induktiv gekoppelter Transpondersysteme.Darmstadt, Technische Universität, [Online-Edition: http://elib.tu-darmstadt.de/diss/000882 <http://elib.tu-darmstadt.de/diss/000882> <official_url>],[Ph.D. Thesis]
work_keys_str_mv AT soffkekaioliver modellierungsimulationundentwurfinduktivgekoppeltertranspondersysteme
_version_ 1719327724772786176
spelling ndltd-tu-darmstadt.de-oai-tuprints.ulb.tu-darmstadt.de-8822020-07-15T07:09:31Z http://tuprints.ulb.tu-darmstadt.de/882/ Modellierung, Simulation und Entwurf induktiv gekoppelter Transpondersysteme Soffke, Kai Oliver Für die Simulation und den Entwurf von Transpondersystemen sind Modelle erforderlich, die direkt im Schaltungssimulator verwendet werden können. Zur Implementierung dieser Modelle bieten sich Beschreibungssprachen zur Modellierung analoger Systeme an, wohingegen vereinfachte Modelle eine erste Abschätzung des Systemverhaltens erlauben, ohne dass Simulationen durchgeführt werden müssen. Darüber hinaus stellt ein gutes Verständnis vom Verhalten der Antenne des Lesegerätes und dem prinzipiellen Einfluss ihrer Abmessungen eine Voraussetzung für den systematischen Entwurf solcher Systeme dar. Für induktiv gekoppelte Transpondersysteme kommen Schleifenantennen zum Einsatz, die durch die Serienschaltung zweier Widerstände und einer Spule modelliert werden können. Die Widerstände stellen zum einen die Verluste, die in der Antenne selbst entstehen, und zum anderen die abgestrahlte Leistung dar. Die Spule beschreibt die im Nahfeld gespeicherte Energie. Die Bestimmung der Induktivität und des Strahlungswiderstandes kann aus der von der Antenne erzeugten Feldverteilung erfolgen. Dabei wird zunächst nicht zwischen Nah- und Fernfeld unterschieden, sondern das tatsächlich erzeugte Feld bestimmt. Anhand dieser Ergebnisse lässt sich dann zeigen, dass der Ansprechbereich typischer Transponder in einem Gebiet um die Antenne liegt, in dem das erzeugte Feld durch eine Nahfeldnäherung ausreichend gut beschrieben ist. Die Induktivitätsbestimmung führt im Falle einer kreisförmigen Antenne zu elliptischen Integralen, die nicht geschlossen dargestellt werden können, so dass die Integrale numerisch gelöst werden müssen. Mit Hilfe der nichtlinearen Regression lassen sich schließlich mögliche Näherungformeln ableiten. Auch die Analyse des Strahlungswiderstandes führt zu einem Integral, das nicht geschlossen lösbar ist. Die Annahme, dass die Antenne elektrisch klein ist, liefert aber gleichzeitig eine Näherung für den Integranden, so dass eine geschlossene Darstellung des Strahlungswiderstandes möglich wird. Für die Verluste muss schließlich die Stromverteilung im Leiter bekannt sein. Aus der Stromverteilung ergibt sich das zugehörige Magnetfeld und aus beiden zusammen die Verlustleistung, welche proportional zum Hochfrequenzwiderstand des Leiters ist. Unter der Annahme der Anpassung der kreisförmigen Schleifenantenne an den Ausgangstreiber kann man eine optimale Antennengröße und ein Modell für die erreichbare Ansprechentfernung des Transponders ableiten. Es lässt sich darüber hinaus zeigen, dass bei einer vorgeschriebenen Beschränkung der Feldstärke, die in einer bestimmten Entfernung von der Lesegerätantenne herrscht, eine Erhöhung der Leistung bei gleichzeitiger Verringerung der Antennengröße keine Überschreitung der maximal erlaubten Feldstärke in der festgelegten Entfernung nach sich zieht und dennoch die Ansprechentfernung vergrößert wird. Allerdings gibt es für letztere eine theoretische Grenze. Aus dem gekoppelten System, bestehend aus Lesegerät und Transponder, kann die maximal übertragbare Leistung und die zugehörige optimale Schaltungskonfiguration ermittelt werden. Es zeigt sich, dass im Falle einer schwachen Kopplung diese beim Entwurf der Anpassnetzwerke vernachlässigt werden kann. Die Ergebnisse weichen dennoch nur minimal von der optimalen Lösung ab. Dies gilt zwar nur für eine schwache Kopplung, aber da diese für die Energieübertragung zum Transponder kritischer ist als eine starke Kopplung, ist es ausreichend, die Anpassung für diesen Fall zu optimieren. Die Modellierung des Gesamtsystems zur Integration in Schaltungssimulatoren erfolgt mit Hilfe der Hardwarebeschreibungssprache Verilog-A, die um Modelle auf der Basis ein- und auslaufender Wellen erweitert wird. Zu diesem Zweck kann eine weitere Disziplin hinzugefügt werden, welche die einlaufende Welle als Fluss und die Auslaufende als Potential darstellt. Ein entsprechendes Konvertermodul setzt den Strom und die Spannung an einem seiner beiden Tore auf die zugehörigen Wellengrößen am anderen Tor um. Zusätzlich wird ein Verbindungselement vorgestellt, welches sicherstellt, dass die auslaufenden Wellen eines Moduls die entsprechenden einlaufenden Wellen eines anderen angeschlossenen Moduls darstellen. Innerhalb dieses Rahmens können dann die eigentlichen Modelle direkt beschrieben werden. Die Ergebnisse werden auf ein praktisches Beispiel angewendet: Der Entwurf eines einfachen Transponders und die Simulation seines Verhaltens im Gesamtsystem, welches aus Lesegerät, gekoppelten Antennen und dem Transponder besteht. Der Entwurf des Transponders erfolgt dabei auf Transistorebene, wobei allerdings auch Dioden und passive Elemente zum Einsatz kommen. Die restlichen Komponenten des Systems liegen entweder als Verhaltensmodell oder in Form konkreter Schaltungen vor. Aufgrund der extrem geringen Fertigungskosten sind Massendruckverfahren zur Realisierung von Transpondern in gedruckter Elektronik sehr interessant. Beim Einsatz neuer Technologien zur Realisierung von Schaltungen und Systemen treten allerdings des öfteren Fragen zur Zuverlässigkeit auf. Aufbauend auf den Ideen von Neumanns werden die erreichbaren Zuverlässigkeiten beim Einsatz modularer Redundanz theoretisch untersucht und die Ergebnisse mit Hilfe von Monte-Carlo-Simulationen verifiziert. Anschließend wird eine Methode zur statistischen Beschreibung von Gatternetzwerken vorgestellt, die sowohl Aspekte der statistischen Analyse des Zeitverhaltens sowie eine statistische Betrachtung der Spannungsverläufe über der Zeit umfasst. 2007-10-23 Ph.D. Thesis PeerReviewed application/pdf ger only the rights of use according to UrhG https://tuprints.ulb.tu-darmstadt.de/882/1/Dissertation_Soffke.pdf Soffke, Kai Oliver <http://tuprints.ulb.tu-darmstadt.de/view/person/Soffke=3AKai_Oliver=3A=3A.html> (2007): Modellierung, Simulation und Entwurf induktiv gekoppelter Transpondersysteme.Darmstadt, Technische Universität, [Online-Edition: http://elib.tu-darmstadt.de/diss/000882 <http://elib.tu-darmstadt.de/diss/000882> <official_url>],[Ph.D. Thesis] http://elib.tu-darmstadt.de/diss/000882 de info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/openAccess