Quantum Monte Carlo calculations with chiral effective field theory interactions

The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate descr...

Full description

Bibliographic Details
Main Author: Tews, Ingo
Format: Others
Language:English
en
Published: 2015
Online Access:https://tuprints.ulb.tu-darmstadt.de/5011/1/phd_final.pdf
Tews, Ingo <http://tuprints.ulb.tu-darmstadt.de/view/person/Tews=3AIngo=3A=3A.html> (2015): Quantum Monte Carlo calculations with chiral effective field theory interactions.Darmstadt, Technische Universität, [Ph.D. Thesis]
Description
Summary:The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schrödinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By comparing these results with many-body perturbation theory (MBPT), we can study the perturbative convergence of local chiral interactions. We have shown that soft, low-cutoff potentials converge well and can be reliably used in MBPT, while harder potentials are less perturbative and have to be treated within AFDMC. We have also derived consistent local chiral 3N interactions and study these forces in detail. Our results show that local regulators lead to less repulsion from 3N forces compared to nonlocal 3N forces. Finally, we present the neutron-matter equation of state based on local chiral NN and 3N interactions using the AFDMC method as well as results for light nuclei and neutron drops. This work paves the way for systematic QMC calculations with chiral EFT interactions for nuclei and nucleonic matter.