The Stokes and Navier-Stokes equations in layer domains with and without a free surface

This thesis is concerned with certain aspects of the Stokes- and Navier-Stokes equations in layer domains with and without a free surface. We investigate the Stokes equations in layer domains in the endpoints L1 and Linfty of the scale of Lebesgue spaces Lp and show that the Stokes operator in sol...

Full description

Bibliographic Details
Main Author: von Below, Lorenz
Format: Others
Language:German
en
Published: 2014
Online Access:http://tuprints.ulb.tu-darmstadt.de/4228/1/vbelow-thesis-publishable-20141104b.pdf
von Below, Lorenz <http://tuprints.ulb.tu-darmstadt.de/view/person/von_Below=3ALorenz=3A=3A.html> : The Stokes and Navier-Stokes equations in layer domains with and without a free surface. Technische Universität, Darmstadt [Ph.D. Thesis], (2014)
id ndltd-tu-darmstadt.de-oai-tuprints.ulb.tu-darmstadt.de-4228
record_format oai_dc
spelling ndltd-tu-darmstadt.de-oai-tuprints.ulb.tu-darmstadt.de-42282017-03-17T06:35:58Z http://tuprints.ulb.tu-darmstadt.de/4228/ The Stokes and Navier-Stokes equations in layer domains with and without a free surface von Below, Lorenz This thesis is concerned with certain aspects of the Stokes- and Navier-Stokes equations in layer domains with and without a free surface. We investigate the Stokes equations in layer domains in the endpoints L1 and Linfty of the scale of Lebesgue spaces Lp and show that the Stokes operator in solenoidal subspaces of L1 and Linfty generates a holomorphic semigroup if and only if the spacial dimension of the layer dimension is two. In the last chapter we investigate the singular limit of vanishing surface tension for a free boundary problem for the Navier-Stokes equations and show convergence of solutions in the Lp maximal regularity space. 2014 Ph.D. Thesis NonPeerReviewed text ger Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0 http://tuprints.ulb.tu-darmstadt.de/4228/1/vbelow-thesis-publishable-20141104b.pdf von Below, Lorenz <http://tuprints.ulb.tu-darmstadt.de/view/person/von_Below=3ALorenz=3A=3A.html> : The Stokes and Navier-Stokes equations in layer domains with and without a free surface. Technische Universität, Darmstadt [Ph.D. Thesis], (2014) en info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/openAccess
collection NDLTD
language German
en
format Others
sources NDLTD
description This thesis is concerned with certain aspects of the Stokes- and Navier-Stokes equations in layer domains with and without a free surface. We investigate the Stokes equations in layer domains in the endpoints L1 and Linfty of the scale of Lebesgue spaces Lp and show that the Stokes operator in solenoidal subspaces of L1 and Linfty generates a holomorphic semigroup if and only if the spacial dimension of the layer dimension is two. In the last chapter we investigate the singular limit of vanishing surface tension for a free boundary problem for the Navier-Stokes equations and show convergence of solutions in the Lp maximal regularity space.
author von Below, Lorenz
spellingShingle von Below, Lorenz
The Stokes and Navier-Stokes equations in layer domains with and without a free surface
author_facet von Below, Lorenz
author_sort von Below, Lorenz
title The Stokes and Navier-Stokes equations in layer domains with and without a free surface
title_short The Stokes and Navier-Stokes equations in layer domains with and without a free surface
title_full The Stokes and Navier-Stokes equations in layer domains with and without a free surface
title_fullStr The Stokes and Navier-Stokes equations in layer domains with and without a free surface
title_full_unstemmed The Stokes and Navier-Stokes equations in layer domains with and without a free surface
title_sort stokes and navier-stokes equations in layer domains with and without a free surface
publishDate 2014
url http://tuprints.ulb.tu-darmstadt.de/4228/1/vbelow-thesis-publishable-20141104b.pdf
von Below, Lorenz <http://tuprints.ulb.tu-darmstadt.de/view/person/von_Below=3ALorenz=3A=3A.html> : The Stokes and Navier-Stokes equations in layer domains with and without a free surface. Technische Universität, Darmstadt [Ph.D. Thesis], (2014)
work_keys_str_mv AT vonbelowlorenz thestokesandnavierstokesequationsinlayerdomainswithandwithoutafreesurface
AT vonbelowlorenz stokesandnavierstokesequationsinlayerdomainswithandwithoutafreesurface
_version_ 1718424064088866816