Quantum two-state level-crossing models in terms of the Heun functions

La thèse est consacrée au problème fondamental de l'excitation et de la manipulation de systèmes quantiques à spectre d'énergie discret, via des champs lasers externes. Nous examinons le problème semi-classique à deux états quantiques, dépendant du temps, lorsque le champ électromagnétique...

Full description

Bibliographic Details
Main Author: Ishkhanyan, Tigran
Other Authors: Bourgogne Franche-Comté
Language:en
Published: 2019
Subjects:
539
535
Online Access:http://www.theses.fr/2019UBFCK026/document
id ndltd-theses.fr-2019UBFCK026
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Excitation laser
Système quantique à deux états
Croisements de niveaux
Fonctions de Heun
Laser excitation
Quantum two-State problem
Level-Crossings
Heun functions
539
535
530.1
spellingShingle Excitation laser
Système quantique à deux états
Croisements de niveaux
Fonctions de Heun
Laser excitation
Quantum two-State problem
Level-Crossings
Heun functions
539
535
530.1
Ishkhanyan, Tigran
Quantum two-state level-crossing models in terms of the Heun functions
description La thèse est consacrée au problème fondamental de l'excitation et de la manipulation de systèmes quantiques à spectre d'énergie discret, via des champs lasers externes. Nous examinons le problème semi-classique à deux états quantiques, dépendant du temps, lorsque le champ électromagnétique externe est résonant ou quasi résonant pour deux des nombreux niveaux du système. La thèse est centrée sur la description analytique de l'évolution non adiabatique des systèmes quantiques soumis à une excitation par des configurations de champs avec croisements de niveaux. Dans la présente thèse, nous classifions l’ensemble complet des modèles quantiques à deux états semi-classiques dépendants du temps, qui peuvent être résolus en cinq fonctions de la classe de Heun.Les principaux résultats de la thèse sont :1. Au total, 61 classes infinies de modèles à deux états (i.e. les configurations de champ laser externe) solubles en termes de fonctions de Heun générale et confluentes sont dérivées.2. Dans ces classes infinies, trois sous-modèles originaux avec croisements de niveaux sont identifiés: l'un décrit les croisements infinis de résonance (périodiques), l'autre décrit les croisements de résonance asymétrique avec un temps de processus fini et le dernier décrit les processus de croisements infinis de résonance asymétrique. Le comportement du système quantique à deux états dans ces configurations de champ est analysé de manière exhaustive.3. Les solutions des équations de Heun en termes de fonctions bêta incomplètes, de fonctions hypergéométriques confluentes de Kummer et de fonctions Hermite d'ordre non entier sont construites.4. Des solutions analytiques du problème quantique à deux états sont projetées sur les équations d'onde relativistes et non relativistes : de nouveaux potentiels pour les équations de Schrödinger et de Klein-Gordon sont dérivés et résolus. === The thesis is devoted to the fundamental problem of excitation and manipulation of quantum systems, having discrete energy spectrum, via external laser fields. We examine the semiclassical time- dependent quantum two-state problem, when the external electromagnetic field is resonant or quasi-resonant for some two of many levels of the system. The focus of the thesis is on the analytic description of the non- adiabatic evolution of quantum systems subject to excitation by level-crossing field configurations. In the present thesis we classify the complete set of the semiclassical time-dependent quantum two-state models solvable in terms of the five function of the Heun class.Main results of the thesis are:1. In total 61 infinite classes of two-state models (i.e. external laser field configurations) solvable in terms of general and confluent Heun functions are derived.2. In these infinite classes three original level-crossing submodels are identified: one describes infinite (periodical) crossings of resonance, one describes asymmetric resonance crossing with a finite time of process and the last one describes infinite asymmetric resonance crossing process. The behavior of the two-state quantum system under these field configurations is comprehensively analyzed.3. Solutions of the Heun equations in terms of incomplete Beta functions, Kummer confluent hypergeometric functions and non-integer-order Hermite functions of a shifted and scaled argument are constructed.4. Analytic solutions of the quantum two-state problem are projected on the relativistic and non-relativistic wave-equations: new potentials for the Schrödinger and Klein-Gordon equations are derived and solved.
author2 Bourgogne Franche-Comté
author_facet Bourgogne Franche-Comté
Ishkhanyan, Tigran
author Ishkhanyan, Tigran
author_sort Ishkhanyan, Tigran
title Quantum two-state level-crossing models in terms of the Heun functions
title_short Quantum two-state level-crossing models in terms of the Heun functions
title_full Quantum two-state level-crossing models in terms of the Heun functions
title_fullStr Quantum two-state level-crossing models in terms of the Heun functions
title_full_unstemmed Quantum two-state level-crossing models in terms of the Heun functions
title_sort quantum two-state level-crossing models in terms of the heun functions
publishDate 2019
url http://www.theses.fr/2019UBFCK026/document
work_keys_str_mv AT ishkhanyantigran quantumtwostatelevelcrossingmodelsintermsoftheheunfunctions
AT ishkhanyantigran modelesquantiquesadeuxetatsaveccroisementsdeniveauxdecritsparlesfonctionsdeheun
_version_ 1719287275162959872
spelling ndltd-theses.fr-2019UBFCK0262019-11-05T03:30:35Z Quantum two-state level-crossing models in terms of the Heun functions Modèles quantiques à deux états avec croisements de niveaux décrits par les fonctions de Heun Excitation laser Système quantique à deux états Croisements de niveaux Fonctions de Heun Laser excitation Quantum two-State problem Level-Crossings Heun functions 539 535 530.1 La thèse est consacrée au problème fondamental de l'excitation et de la manipulation de systèmes quantiques à spectre d'énergie discret, via des champs lasers externes. Nous examinons le problème semi-classique à deux états quantiques, dépendant du temps, lorsque le champ électromagnétique externe est résonant ou quasi résonant pour deux des nombreux niveaux du système. La thèse est centrée sur la description analytique de l'évolution non adiabatique des systèmes quantiques soumis à une excitation par des configurations de champs avec croisements de niveaux. Dans la présente thèse, nous classifions l’ensemble complet des modèles quantiques à deux états semi-classiques dépendants du temps, qui peuvent être résolus en cinq fonctions de la classe de Heun.Les principaux résultats de la thèse sont :1. Au total, 61 classes infinies de modèles à deux états (i.e. les configurations de champ laser externe) solubles en termes de fonctions de Heun générale et confluentes sont dérivées.2. Dans ces classes infinies, trois sous-modèles originaux avec croisements de niveaux sont identifiés: l'un décrit les croisements infinis de résonance (périodiques), l'autre décrit les croisements de résonance asymétrique avec un temps de processus fini et le dernier décrit les processus de croisements infinis de résonance asymétrique. Le comportement du système quantique à deux états dans ces configurations de champ est analysé de manière exhaustive.3. Les solutions des équations de Heun en termes de fonctions bêta incomplètes, de fonctions hypergéométriques confluentes de Kummer et de fonctions Hermite d'ordre non entier sont construites.4. Des solutions analytiques du problème quantique à deux états sont projetées sur les équations d'onde relativistes et non relativistes : de nouveaux potentiels pour les équations de Schrödinger et de Klein-Gordon sont dérivés et résolus. The thesis is devoted to the fundamental problem of excitation and manipulation of quantum systems, having discrete energy spectrum, via external laser fields. We examine the semiclassical time- dependent quantum two-state problem, when the external electromagnetic field is resonant or quasi-resonant for some two of many levels of the system. The focus of the thesis is on the analytic description of the non- adiabatic evolution of quantum systems subject to excitation by level-crossing field configurations. In the present thesis we classify the complete set of the semiclassical time-dependent quantum two-state models solvable in terms of the five function of the Heun class.Main results of the thesis are:1. In total 61 infinite classes of two-state models (i.e. external laser field configurations) solvable in terms of general and confluent Heun functions are derived.2. In these infinite classes three original level-crossing submodels are identified: one describes infinite (periodical) crossings of resonance, one describes asymmetric resonance crossing with a finite time of process and the last one describes infinite asymmetric resonance crossing process. The behavior of the two-state quantum system under these field configurations is comprehensively analyzed.3. Solutions of the Heun equations in terms of incomplete Beta functions, Kummer confluent hypergeometric functions and non-integer-order Hermite functions of a shifted and scaled argument are constructed.4. Analytic solutions of the quantum two-state problem are projected on the relativistic and non-relativistic wave-equations: new potentials for the Schrödinger and Klein-Gordon equations are derived and solved. Electronic Thesis or Dissertation Text en http://www.theses.fr/2019UBFCK026/document Ishkhanyan, Tigran 2019-09-18 Bourgogne Franche-Comté Institute for Physical Research (Ashtarak) Leroy, Claude Papoyan, Aram V.