Collective plasmonic excitations in two- dimensional metamaterials based on near-field coupled metallic nanoparticles

L’étude des propriétés plasmoniques est un champ de recherche actuellement très actif. En particulier, la possibilité de manipuler la lumière à des échelles sub-longueur d’ondes rend ce domaine très attractif. Récemment, plusieurs études ont montré que les plasmons collectifs dans des méta-matériaux...

Full description

Bibliographic Details
Main Author: Fernique, François
Other Authors: Strasbourg
Language:en
fr
Published: 2019
Subjects:
Online Access:http://www.theses.fr/2019STRAE012/document
Description
Summary:L’étude des propriétés plasmoniques est un champ de recherche actuellement très actif. En particulier, la possibilité de manipuler la lumière à des échelles sub-longueur d’ondes rend ce domaine très attractif. Récemment, plusieurs études ont montré que les plasmons collectifs dans des méta-matériaux bi-dimensionnels constitués de nanoparticules métalliques se comportaient de manière similaire aux électrons dans les cristaux et partageaient certaines de leurs propriétés. Dans ce manuscrit, nous présentons une théorie unifiée permettant de décrire les propriétés de tels modes plasmoniques dans des réseaux ordonnés de géométrie arbitraires constitués de nanoparticules métalliques couplées en champ proche. En particulier, nous évaluons les taux de décroissance de ces modes ainsi que leurs décalages en fréquence afin de prédire leur observabilité expérimentale. === The study of plasmonic properties is one of the fields of research currently very active. In particular, the ability to manipulate light at subwavelength scales makes this subject very appealing. Recently, several studies have shown that collective plasmons in two-dimensional meta-materials based on metallic nanoparticles behave similarly to electrons in crystals and share some of their properties. In this manuscript, we present a unified theory for describing the properties of such modes in regular arrays of arbitrary geometries constituted by near-field coupled spherical nanoparticles. In particular, we have evaluated the linewidths of these modes as well as their frequency shifts in order to discussed their experimental observabilities.