Cycles séparants, isopérimétrie et modifications de distances dans les grandes cartes planaires aléatoires
Les cartes planaires sont des graphes planaires dessinés sur la sphère et vus à déformation près. De nombreuses propriétés des cartes sont supposées universelles, dans le sens où elles ne dépendent pas des détails du modèle choisi. Nous commençons par établir une inégalité isopérimétrique dans la qu...
Main Author: | |
---|---|
Other Authors: | |
Language: | fr en |
Published: |
2019
|
Subjects: | |
Online Access: | http://www.theses.fr/2019SACLS476/document |
id |
ndltd-theses.fr-2019SACLS476 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-theses.fr-2019SACLS4762020-01-30T03:27:41Z Cycles séparants, isopérimétrie et modifications de distances dans les grandes cartes planaires aléatoires Separating cycles, isoperimetry and modifications of distances in large random planar maps Probabilités Cartes aléatoires Cartes planaires Quadrangulations Géométrie brownienne Décomposition en squelette Probability theory Random maps Planar maps Quadrangulations Brownian geometry Skeleton decomposition Les cartes planaires sont des graphes planaires dessinés sur la sphère et vus à déformation près. De nombreuses propriétés des cartes sont supposées universelles, dans le sens où elles ne dépendent pas des détails du modèle choisi. Nous commençons par établir une inégalité isopérimétrique dans la quadrangulation infinie du plan. Nous confirmons également une conjecture de Krikun portant sur la longueur des cycles les plus courts séparant la boule de rayon $r$ de l'infini. Dans un deuxième temps, nous nous intéressons à l'effet de modifications de distances sur la géométrie à grande échelle des quadrangulations uniformes, élargissant la classe d'universalité de la carte brownienne. Nous montrons également que la bijection de Tutte, entre quadrangulations et cartes planaires, est asymptotiquement une isométrie. Enfin, nous établissons une borne supérieure sur le temps de mélange de la marche aléatoire dans les cartes aléatoires. Planar maps are planar graphs drawn on the sphere and seen up to deformation. Many properties of maps are conjectured to be universal, in the sense that they do not depend on the details of the model.We begin by establishing an isoperimetric inequality in the infinite quadrangulation of the plane. We also confirm a conjecture by Krikun concerning the length of the shortest cycles separating the ball of radius $r$ from infinity. We then consider the effect of modifications of distances on the large-scale geometry of uniform quadrangulations, extending the universality class of the Brownian map. We also show that the Tutte bijection, between quadrangulations and planar maps, is asymptotically an isometry. Finally, we establish an upper bound on the mixing time of the random walk in random maps. Electronic Thesis or Dissertation Text fr en http://www.theses.fr/2019SACLS476/document Lehéricy, Thomas 2019-12-04 Paris Saclay Le Gall, Jean-François |
collection |
NDLTD |
language |
fr en |
sources |
NDLTD |
topic |
Probabilités Cartes aléatoires Cartes planaires Quadrangulations Géométrie brownienne Décomposition en squelette Probability theory Random maps Planar maps Quadrangulations Brownian geometry Skeleton decomposition |
spellingShingle |
Probabilités Cartes aléatoires Cartes planaires Quadrangulations Géométrie brownienne Décomposition en squelette Probability theory Random maps Planar maps Quadrangulations Brownian geometry Skeleton decomposition Lehéricy, Thomas Cycles séparants, isopérimétrie et modifications de distances dans les grandes cartes planaires aléatoires |
description |
Les cartes planaires sont des graphes planaires dessinés sur la sphère et vus à déformation près. De nombreuses propriétés des cartes sont supposées universelles, dans le sens où elles ne dépendent pas des détails du modèle choisi. Nous commençons par établir une inégalité isopérimétrique dans la quadrangulation infinie du plan. Nous confirmons également une conjecture de Krikun portant sur la longueur des cycles les plus courts séparant la boule de rayon $r$ de l'infini. Dans un deuxième temps, nous nous intéressons à l'effet de modifications de distances sur la géométrie à grande échelle des quadrangulations uniformes, élargissant la classe d'universalité de la carte brownienne. Nous montrons également que la bijection de Tutte, entre quadrangulations et cartes planaires, est asymptotiquement une isométrie. Enfin, nous établissons une borne supérieure sur le temps de mélange de la marche aléatoire dans les cartes aléatoires. === Planar maps are planar graphs drawn on the sphere and seen up to deformation. Many properties of maps are conjectured to be universal, in the sense that they do not depend on the details of the model.We begin by establishing an isoperimetric inequality in the infinite quadrangulation of the plane. We also confirm a conjecture by Krikun concerning the length of the shortest cycles separating the ball of radius $r$ from infinity. We then consider the effect of modifications of distances on the large-scale geometry of uniform quadrangulations, extending the universality class of the Brownian map. We also show that the Tutte bijection, between quadrangulations and planar maps, is asymptotically an isometry. Finally, we establish an upper bound on the mixing time of the random walk in random maps. |
author2 |
Paris Saclay |
author_facet |
Paris Saclay Lehéricy, Thomas |
author |
Lehéricy, Thomas |
author_sort |
Lehéricy, Thomas |
title |
Cycles séparants, isopérimétrie et modifications de distances dans les grandes cartes planaires aléatoires |
title_short |
Cycles séparants, isopérimétrie et modifications de distances dans les grandes cartes planaires aléatoires |
title_full |
Cycles séparants, isopérimétrie et modifications de distances dans les grandes cartes planaires aléatoires |
title_fullStr |
Cycles séparants, isopérimétrie et modifications de distances dans les grandes cartes planaires aléatoires |
title_full_unstemmed |
Cycles séparants, isopérimétrie et modifications de distances dans les grandes cartes planaires aléatoires |
title_sort |
cycles séparants, isopérimétrie et modifications de distances dans les grandes cartes planaires aléatoires |
publishDate |
2019 |
url |
http://www.theses.fr/2019SACLS476/document |
work_keys_str_mv |
AT lehericythomas cyclesseparantsisoperimetrieetmodificationsdedistancesdanslesgrandescartesplanairesaleatoires AT lehericythomas separatingcyclesisoperimetryandmodificationsofdistancesinlargerandomplanarmaps |
_version_ |
1719310557800038400 |