Study of the antihydrogen atom and ion production via charge exchange reaction on positronium

Le but principal de la collaboration GBAR est de mesurer le comportement d'atomes d'antihydrogène sous l'effet de la gravité terrestre. Ceci est fait en mesurant la chute libre classique d'atomes d'antihydrogène, qui est un test direct du principe d'équivalence faible p...

Full description

Bibliographic Details
Main Author: Latacz, Barbara Maria
Other Authors: Paris Saclay
Language:en
Published: 2019
Subjects:
Online Access:http://www.theses.fr/2019SACLS266/document
Description
Summary:Le but principal de la collaboration GBAR est de mesurer le comportement d'atomes d'antihydrogène sous l'effet de la gravité terrestre. Ceci est fait en mesurant la chute libre classique d'atomes d'antihydrogène, qui est un test direct du principe d'équivalence faible pour l'antimatière. La première étape de l'expérience est de produire des ions d'antihydrogène et de les amener dans un piège de Paul, où ils peuvent être refroidis à une température de l'ordre du μK en utilisant la technique du refroidissement sympathique avec des ions Be⁺ eux-mêmes mis dans leur état fondamental par la technique Raman à bande latérale. Une température de l'ordre du μK correspond à une vitesse de la particule de l'ordre de 1 m/s. Une fois cette vitesse atteinte, l'ion antihydrogène peut être neutralisé et commence sa chute. Ceci permet une précision de 1 % sur la mesure de l’accélération gravitationnelle g pour l’antimatière avec environ 1500 événements. Cependant, pour mesurer la chute libre, il faut d'abord produire l'ion antihydrogène. Celui-ci est formé dans les réactions d'échange de charge entre des antiprotons et des antihydrogènes avec du positronium. Positronium et atomes d'antihydrogène peut se trouver soit à l’état fondamental, soit dans un état excité. Une étude expérimentale de la mesure de la section efficace de ces deux réactions est décrite dans cette thèse. La production de l'atome d'antihydrogène ainsi que de l'ion se passe à l’intérieur d'une cavité. La formation d'un antihydrogène ion lors d'une interaction entre faisceaux requiert environ 5x10⁶ antiprotons/paquet et quelques 10¹¹ Ps/cm⁻³ de densité de positronium à l’intérieur d'une cavité. Celle-ci est produite par un faisceau contenant 5x10¹⁰ positrons par paquet. La production de faisceaux aussi intenses avec les propriétés requises est en soi un challenge. Le développement de la source de positrons de GBAR est décrite. Celle-ci est basée sur un accélérateur linéaire à électrons de 9 MeV. Le faisceau d’électrons est incident sur une cible de tungstène où les positrons sont créés par rayonnement de freinage (gammas) et création de paires. Une partie des positrons ainsi créés diffusent à nouveau dans un modérateur de tungstène en réduisant leur énergie à environ 3 eV. Ces particules sont re-accélérées à une énergie d'environ 53 eV. Aujourd'hui, le flux mesuré de positrons est au niveau de 6x10⁷ e⁺/s, soit quelques fois. Puis la thèse comporte une courte description des préparatifs pour les faisceaux d'antiprotons ou de protons, terminée par un chapitre sur le taux de production attendu d'atomes et d'ions d'antihydrogène. En aval de la réaction, les faisceaux d'antiprotons, d'atomes et d'ions d'antihydrogène sont guidés vers leur système de détection. Ceux-ci ont été conçus de façon à permettre la détection d'un à plusieurs milliers d'atomes d'antihydrogène, un seul ion antihydrogène et tous les 5x10⁶ antiprotons. Ceci est particulièrement difficile parce que l'annihilation des antiprotons crée beaucoup de particules secondaires qui peuvent perturber la mesure d'un atome ou ion. La majeure partie de la thèse consiste en la description des bruits de fond attendus pour la détection des atomes et ions d'antihydrogène. De plus, le système de détection permet de mesurer les sections efficaces pour les réactions symétriques de production d'atomes et d'ions hydrogèene par échange de charge entre protons et positronium. La partie production d’antihydrogène ions de l’expérience a été complètement installée au CERN en 2018. Les premiers tests avec des antiprotons provenant du décélérateur ELENA ont été effectués. Actuellement, l’expérience est testée avec des positrons et des protons, de façon à former des atomes et ions hydrogène. Une optimisation de la production de ces ions de matière aidera à se préparer pour la prochaine période de faisceau d'antiprotons en 2021. === The main goal of the GBAR collaboration is to measure the Gravitational Behaviour of Antihydrogen at Rest. It is done by measuring the classical free fall of neutral antihydrogen, which is a direct test of the weak equivalence principle for antimatter. The first step of the experiment is to produce the antihydrogen ion and catch it in a Paul trap, where it can be cooled to μK temperature using ground state Raman sideband sympathetic cooling. The μK temperature corresponds to particle velocity in the order of 1 m/s. Once such velocity is reached, the antihydrogen ion can be neutralised and starts to fall. This allows reaching 1 % precision on the measurement of the gravitational acceleration g for antimatter with about 1500 events. Later, it would be possible to reach 10⁻⁵ - 10⁻⁶ precision by measuring the gravitational quantum states of cold antihydrogen. However, in order to measure the free fall, firstly the antihydrogen ion has to be produced. It is formed in the charge exchange reactions between antiproton/antihydrogen and positronium. Positronium and antihydrogen atoms can be either in a ground state or in an excited state. An experimental study of the cross section measurement for these two reactions is described in the presented thesis. The antihydrogen atom and ion production takes place in a cavity. The formation of one antihydrogen ion in one beam crossing requires about 5x10⁶ antiprotons/bunch and a few 10¹¹ Ps/cm⁻³ positronium density inside the cavity, which is produced with a beam containing 5x10¹⁰ positrons per bunch. The production of such intense beams with required properties is a challenging task. First, the development of the positron source is described. The GBAR positron source is based on a 9 MeV linear electron accelerator. The relatively low energy was chosen to avoid activation of the environment. The electron beam is incident on a tungsten target where positrons are created from Bremsstrahlung radiation (gammas) through the pair creation process. Some of the created positrons undergo a further diffusion in the tungsten moderator reducing their energy to about 3 eV. The particles are re-accelerated to about 53 eV energy and are adiabatically transported to the next stage of the experiment. Presently, the measured positron flux is at the level of 6x10⁷ e⁺/s, which is a few times higher than intensities reached with radioactive sources. Then, the thesis features a short description of the antiproton/proton beam preparations, finalised with a chapter about the expected antihydrogen atom and ion production yield. After the reaction, antiproton, antihydrogen atom, and ion beams are guided to the detection system. It is made to allow for detection from 1 to a few thousand antihydrogen atoms, a single antihydrogen ion and all 5x10⁶ antiprotons. It is especially challenging because antiproton annihilation creates a lot of secondary particles which may disturb measurements of single antihydrogen atoms and ions. The main part of the Thesis is the description of the expected background for the antihydrogen atom and ion detection. Additionally, the detection system allows measuring the cross sections for the symmetric reactions of a hydrogen atom and ion production through charge exchange between protons and positronium. The antihydrogen ion production part of the experiment was fully installed at CERN in 2018. The first tests with antiprotons from the ELENA decelerator were done. Currently, the experiment is being commissioned with positrons and protons, in order to perform the hydrogen atom and ion formation. The optimisation of the ion production with matter will help to be fully prepared for the next antiproton beam time in 2021.