Développements en radiomique pour une meilleure caractérisation du gliome infiltrant du tronc cérébral à partir d'imagerie par résonance magnétique

La radiomique suppose que des informations pertinentes non repérables visuellement peuvent être trouvées en calculant une grande quantité d’indices quantitatifs à partir des images médicales. En cancérologie, ces informations pourraient caractériser le phénotype de la tumeur et définir le pronostic...

Full description

Bibliographic Details
Main Author: Goya Outi, Jessica
Other Authors: Paris Saclay
Language:fr
Published: 2019
Subjects:
IRM
MRI
Online Access:http://www.theses.fr/2019SACLS219/document
id ndltd-theses.fr-2019SACLS219
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic Radiomique
IRM
Neuro-oncologie
Apprentissage Automatique
Radiomics
MRI
Neuro-oncology
Machine Learning

spellingShingle Radiomique
IRM
Neuro-oncologie
Apprentissage Automatique
Radiomics
MRI
Neuro-oncology
Machine Learning

Goya Outi, Jessica
Développements en radiomique pour une meilleure caractérisation du gliome infiltrant du tronc cérébral à partir d'imagerie par résonance magnétique
description La radiomique suppose que des informations pertinentes non repérables visuellement peuvent être trouvées en calculant une grande quantité d’indices quantitatifs à partir des images médicales. En cancérologie, ces informations pourraient caractériser le phénotype de la tumeur et définir le pronostic du patient. Le GITC est une tumeur pédiatrique rare diagnostiquée d'après des signes cliniques et son apparence en IRM. Cette thèse présente les premières études radiomiques pour des patients atteints de GITC. Comme les intensités en IRM clinique sont exprimées en unités arbitraires, la première étape de l’étude a été la standardisation des images. Une méthode de normalisation basée sur l'estimation de l'intensité dans la matière blanche d'apparence normale s’est avérée efficace sur plus de 1500 volumes d'images. Des études méthodologiques sur le calcul des indices de texture ont abouti aux recommandations suivantes : (a) discrétiser les niveaux de gris avec une largeur constante pour tous les patients, (b) utiliser un volume d'intérêt constant ou faire attention au biais introduit par des volumes de taille et forme différentes. En s’appuyant sur ces recommandations, les indices radiomiques issus de 4 modalités d'IRM ont été systématiquement analysés en vue de prédire les principales mutations génétiques associées aux GITC et la survie globale des patients au moment du diagnostic. Un pipeline de sélection d’indices a été proposé et différentes méthodes d’apprentissage automatique avec validation croisée ont été mises en oeuvre pour les deux tâches de prédiction. La combinaison des indices cliniques avec les indices d’imagerie est plus efficace que les indices cliniques ou d’imagerie seuls pour la prédiction des deux principales mutations de l’histone H3 (H3.1 versus H3.3) associées au GITC. Comme certaines modalités d'imagerie étaient manquantes, une méthodologie adaptée à l’analyse des bases de données d’imagerie multi-modales avec données manquantes a été proposée pour pallier les limites de recueil des données d'imagerie. Cette approche permet d'intégrer de nouveaux patients. Les résultats du test externe de prédiction des deux principales mutations de l’histone H3 sont encourageants. Concernant la survie, certains indices radiomiques semblent informatifs. Toutefois, le faible nombre de patients n'a pas permis d'établir les performances des prédicteurs proposés. Enfin, ces premières études radiomiques suggèrent la pertinence des indices radiomiques pour la prise en charge des patients atteints de GITC en absence de biopsie mais l’augmentation de la base de données est nécessaire pour confirmer ces résultats. La méthodologie proposée dans cette thèse peut être appliquée à d'autres études cliniques. === Radiomics is based on the assumption that relevant, non-visually identifiable information can be found by calculating a large amount of quantitative indices from medical images. In oncology, this information could characterize the phenotype of the tumor and define the prognosis of the patient. DIPG is a rare pediatric tumor diagnosed by clinical signs and MRI appearance. This work presents the first radiomic studies for patients with DIPG. Since clinical MRI intensities are expressed in arbitrary units, the first step in the study was image standardization. A normalization method based on intensity estimation of the normal-appearing white matter has been shown to be effective on more than 1500 image volumes. Methodological studies on the calculation of texture indices have then defined the following recommendations: (a) discretize gray levels with a constant width for all patients, (b) use a constant volume of interest or pay attention to the bias introduced by volumes of different size and shape. Based on these recommendations, radiomic indices from four MRI modalities were systematically analyzed to predict the main genetic mutations associated with DIPG and the overall survival of patients at the time of diagnosis. An index selection pipeline was proposed and different cross-validated machine learning methods were implemented for both prediction tasks. The combination of clinical indices with imaging indices is more effective than the clinical or imaging indices alone for the prediction of the two main mutations in histone H3 (H3.1 versus H3.3) associated with DIPG. As some imaging modalities were missing, a methodology adapted to the analysis of multi-modal imaging databases with missing data was proposed to overcome the limitations of the collection of imaging data. This approach made it possible to integrate new patients. The results of the external prediction test for the two main mutations of H3 histone are encouraging. Regarding survival, some radiomic indices seem to be informative. However, the small number of patients did not make it possible to establish the performance of the proposed predictors. Finally, these first radiomic studies suggest the relevance of the radiomic indices for the management of patients with DIPG in the absence of biopsy but the database need to be increased in order to confirm these results. The proposed methodology can be applied to other studies.
author2 Paris Saclay
author_facet Paris Saclay
Goya Outi, Jessica
author Goya Outi, Jessica
author_sort Goya Outi, Jessica
title Développements en radiomique pour une meilleure caractérisation du gliome infiltrant du tronc cérébral à partir d'imagerie par résonance magnétique
title_short Développements en radiomique pour une meilleure caractérisation du gliome infiltrant du tronc cérébral à partir d'imagerie par résonance magnétique
title_full Développements en radiomique pour une meilleure caractérisation du gliome infiltrant du tronc cérébral à partir d'imagerie par résonance magnétique
title_fullStr Développements en radiomique pour une meilleure caractérisation du gliome infiltrant du tronc cérébral à partir d'imagerie par résonance magnétique
title_full_unstemmed Développements en radiomique pour une meilleure caractérisation du gliome infiltrant du tronc cérébral à partir d'imagerie par résonance magnétique
title_sort développements en radiomique pour une meilleure caractérisation du gliome infiltrant du tronc cérébral à partir d'imagerie par résonance magnétique
publishDate 2019
url http://www.theses.fr/2019SACLS219/document
work_keys_str_mv AT goyaoutijessica developpementsenradiomiquepourunemeilleurecaracterisationdugliomeinfiltrantdutronccerebralapartirdimagerieparresonancemagnetique
AT goyaoutijessica developmentsinradiomicsforimprovingdiffuseintrinsicpontinegliomacharacterizationusingmagneticresonanceimaging
_version_ 1719310494139940864
spelling ndltd-theses.fr-2019SACLS2192020-01-30T03:27:03Z Développements en radiomique pour une meilleure caractérisation du gliome infiltrant du tronc cérébral à partir d'imagerie par résonance magnétique Developments in radiomics for improving diffuse intrinsic pontine glioma characterization using magnetic resonance imaging Radiomique IRM Neuro-oncologie Apprentissage Automatique Radiomics MRI Neuro-oncology Machine Learning La radiomique suppose que des informations pertinentes non repérables visuellement peuvent être trouvées en calculant une grande quantité d’indices quantitatifs à partir des images médicales. En cancérologie, ces informations pourraient caractériser le phénotype de la tumeur et définir le pronostic du patient. Le GITC est une tumeur pédiatrique rare diagnostiquée d'après des signes cliniques et son apparence en IRM. Cette thèse présente les premières études radiomiques pour des patients atteints de GITC. Comme les intensités en IRM clinique sont exprimées en unités arbitraires, la première étape de l’étude a été la standardisation des images. Une méthode de normalisation basée sur l'estimation de l'intensité dans la matière blanche d'apparence normale s’est avérée efficace sur plus de 1500 volumes d'images. Des études méthodologiques sur le calcul des indices de texture ont abouti aux recommandations suivantes : (a) discrétiser les niveaux de gris avec une largeur constante pour tous les patients, (b) utiliser un volume d'intérêt constant ou faire attention au biais introduit par des volumes de taille et forme différentes. En s’appuyant sur ces recommandations, les indices radiomiques issus de 4 modalités d'IRM ont été systématiquement analysés en vue de prédire les principales mutations génétiques associées aux GITC et la survie globale des patients au moment du diagnostic. Un pipeline de sélection d’indices a été proposé et différentes méthodes d’apprentissage automatique avec validation croisée ont été mises en oeuvre pour les deux tâches de prédiction. La combinaison des indices cliniques avec les indices d’imagerie est plus efficace que les indices cliniques ou d’imagerie seuls pour la prédiction des deux principales mutations de l’histone H3 (H3.1 versus H3.3) associées au GITC. Comme certaines modalités d'imagerie étaient manquantes, une méthodologie adaptée à l’analyse des bases de données d’imagerie multi-modales avec données manquantes a été proposée pour pallier les limites de recueil des données d'imagerie. Cette approche permet d'intégrer de nouveaux patients. Les résultats du test externe de prédiction des deux principales mutations de l’histone H3 sont encourageants. Concernant la survie, certains indices radiomiques semblent informatifs. Toutefois, le faible nombre de patients n'a pas permis d'établir les performances des prédicteurs proposés. Enfin, ces premières études radiomiques suggèrent la pertinence des indices radiomiques pour la prise en charge des patients atteints de GITC en absence de biopsie mais l’augmentation de la base de données est nécessaire pour confirmer ces résultats. La méthodologie proposée dans cette thèse peut être appliquée à d'autres études cliniques. Radiomics is based on the assumption that relevant, non-visually identifiable information can be found by calculating a large amount of quantitative indices from medical images. In oncology, this information could characterize the phenotype of the tumor and define the prognosis of the patient. DIPG is a rare pediatric tumor diagnosed by clinical signs and MRI appearance. This work presents the first radiomic studies for patients with DIPG. Since clinical MRI intensities are expressed in arbitrary units, the first step in the study was image standardization. A normalization method based on intensity estimation of the normal-appearing white matter has been shown to be effective on more than 1500 image volumes. Methodological studies on the calculation of texture indices have then defined the following recommendations: (a) discretize gray levels with a constant width for all patients, (b) use a constant volume of interest or pay attention to the bias introduced by volumes of different size and shape. Based on these recommendations, radiomic indices from four MRI modalities were systematically analyzed to predict the main genetic mutations associated with DIPG and the overall survival of patients at the time of diagnosis. An index selection pipeline was proposed and different cross-validated machine learning methods were implemented for both prediction tasks. The combination of clinical indices with imaging indices is more effective than the clinical or imaging indices alone for the prediction of the two main mutations in histone H3 (H3.1 versus H3.3) associated with DIPG. As some imaging modalities were missing, a methodology adapted to the analysis of multi-modal imaging databases with missing data was proposed to overcome the limitations of the collection of imaging data. This approach made it possible to integrate new patients. The results of the external prediction test for the two main mutations of H3 histone are encouraging. Regarding survival, some radiomic indices seem to be informative. However, the small number of patients did not make it possible to establish the performance of the proposed predictors. Finally, these first radiomic studies suggest the relevance of the radiomic indices for the management of patients with DIPG in the absence of biopsy but the database need to be increased in order to confirm these results. The proposed methodology can be applied to other studies. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2019SACLS219/document Goya Outi, Jessica 2019-09-25 Paris Saclay Frouin, Frédérique