Méthodologies statistiques pour le recueil et l’analyse de données de caractérisation de grands ensembles de stimuli - Application à la caractérisation sensorielle de produits & à la caractérisation de gestes culinaires

Dans le secteur agroalimentaire, la caractérisation des gestes culinaires est considérée de plus en plus comme un levier d’innovation. En observant et en analysant la manière avec laquelle leurs produits sont appréhendés en cuisine par les usagers (consommateurs ou professionnels), les industriels p...

Full description

Bibliographic Details
Main Author: Brard, Margot
Other Authors: Rennes, Agrocampus Ouest
Language:fr
Published: 2019
Subjects:
Online Access:http://www.theses.fr/2019NSARG017/document
id ndltd-theses.fr-2019NSARG017
record_format oai_dc
spelling ndltd-theses.fr-2019NSARG0172019-07-03T04:56:11Z Méthodologies statistiques pour le recueil et l’analyse de données de caractérisation de grands ensembles de stimuli - Application à la caractérisation sensorielle de produits & à la caractérisation de gestes culinaires Statistical methodologies for the collection and analysis of data characterizing large sets of stimuli – Application to the sensory characterization of products & to the characterization of culinary techniques Méthodologies statistiques Grands ensembles de stimuli Caractérisation sensorielle Caractérisation de gestes culinaires Statistical methodologies Large sets of stimuli Sensory characterization Characterization of culinary techniques Dans le secteur agroalimentaire, la caractérisation des gestes culinaires est considérée de plus en plus comme un levier d’innovation. En observant et en analysant la manière avec laquelle leurs produits sont appréhendés en cuisine par les usagers (consommateurs ou professionnels), les industriels peuvent en effet déceler des pistes d’amélioration ou des idées de nouveaux produits.Dans ce travail de recherche, nous proposons de nouvelles méthodes dédiées à la caractérisation des gestes culinaires. Leur caractère innovant repose sur le fait qu’elles relèvent d’une approche quantitative, et non d’une approche qualitative comme cela est usuellement le cas. Elles s’inspirent en partie de deux méthodes de caractérisation utilisées en analyse sensorielle : le tri libre et la Q-méthodologie binaireNous voyons comment des développements méthodologiques apportés à ces dernières permettent de caractériser des grands ensembles de stimuli. Ces développements sont liés à la fois à la procédure de recueil des données et à la procédure d’analyse statistique des données.En particulier, nous proposons plusieurs procédures statistiques permettant d’aborder des problématiques variées : l’analyse d’un ensemble de partitions contenant des données manquantes, la classification non supervisée de profils d’évaluations binaires basée sur la notion d’accord inter-évaluateurs, etc.Nous voyons ensuite que les deux méthodes de caractérisation quantitatives ‘améliorées’ sont applicables à des gestes culinaires In the agri-food sector, the characterization of culinary techniques - through their observation and analysis - is increasingly seen as a lever for innovation. By analyzing how their products are used in the kitchen by the users (consumers or professionals), the manufacturers can detect improvement tracks or ideas for new products.In this research, we propose new methods dedicated to the characterization of culinary techniques. Their innovative nature is based on the fact that they are based on a quantitative approach, and not on a qualitative approach as is usually the case. They partially draw their inspiration in two methods of characterization used in sensory analysis: the free sorting and the binary Q-methodologyWe see how methodological developments brought to the latter make it possible to characterize large sets of stimuli. These developments are both related to the procedure of data collection and to the procedure of statistical analysis of the data. In particular, we propose several statistical procedures to address various issues: the statistical analysis of a set of partitions containing missing data, the unsupervised agreement-based clustering of a set of profiles of binary evaluations, etc.Then, we see that these two 'improved' quantitative methods of characterization can be successfully applicable to culinary techniques. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2019NSARG017/document Brard, Margot 2019-01-21 Rennes, Agrocampus Ouest Causeur, David
collection NDLTD
language fr
sources NDLTD
topic Méthodologies statistiques
Grands ensembles de stimuli
Caractérisation sensorielle
Caractérisation de gestes culinaires
Statistical methodologies
Large sets of stimuli
Sensory characterization
Characterization of culinary techniques

spellingShingle Méthodologies statistiques
Grands ensembles de stimuli
Caractérisation sensorielle
Caractérisation de gestes culinaires
Statistical methodologies
Large sets of stimuli
Sensory characterization
Characterization of culinary techniques

Brard, Margot
Méthodologies statistiques pour le recueil et l’analyse de données de caractérisation de grands ensembles de stimuli - Application à la caractérisation sensorielle de produits & à la caractérisation de gestes culinaires
description Dans le secteur agroalimentaire, la caractérisation des gestes culinaires est considérée de plus en plus comme un levier d’innovation. En observant et en analysant la manière avec laquelle leurs produits sont appréhendés en cuisine par les usagers (consommateurs ou professionnels), les industriels peuvent en effet déceler des pistes d’amélioration ou des idées de nouveaux produits.Dans ce travail de recherche, nous proposons de nouvelles méthodes dédiées à la caractérisation des gestes culinaires. Leur caractère innovant repose sur le fait qu’elles relèvent d’une approche quantitative, et non d’une approche qualitative comme cela est usuellement le cas. Elles s’inspirent en partie de deux méthodes de caractérisation utilisées en analyse sensorielle : le tri libre et la Q-méthodologie binaireNous voyons comment des développements méthodologiques apportés à ces dernières permettent de caractériser des grands ensembles de stimuli. Ces développements sont liés à la fois à la procédure de recueil des données et à la procédure d’analyse statistique des données.En particulier, nous proposons plusieurs procédures statistiques permettant d’aborder des problématiques variées : l’analyse d’un ensemble de partitions contenant des données manquantes, la classification non supervisée de profils d’évaluations binaires basée sur la notion d’accord inter-évaluateurs, etc.Nous voyons ensuite que les deux méthodes de caractérisation quantitatives ‘améliorées’ sont applicables à des gestes culinaires === In the agri-food sector, the characterization of culinary techniques - through their observation and analysis - is increasingly seen as a lever for innovation. By analyzing how their products are used in the kitchen by the users (consumers or professionals), the manufacturers can detect improvement tracks or ideas for new products.In this research, we propose new methods dedicated to the characterization of culinary techniques. Their innovative nature is based on the fact that they are based on a quantitative approach, and not on a qualitative approach as is usually the case. They partially draw their inspiration in two methods of characterization used in sensory analysis: the free sorting and the binary Q-methodologyWe see how methodological developments brought to the latter make it possible to characterize large sets of stimuli. These developments are both related to the procedure of data collection and to the procedure of statistical analysis of the data. In particular, we propose several statistical procedures to address various issues: the statistical analysis of a set of partitions containing missing data, the unsupervised agreement-based clustering of a set of profiles of binary evaluations, etc.Then, we see that these two 'improved' quantitative methods of characterization can be successfully applicable to culinary techniques.
author2 Rennes, Agrocampus Ouest
author_facet Rennes, Agrocampus Ouest
Brard, Margot
author Brard, Margot
author_sort Brard, Margot
title Méthodologies statistiques pour le recueil et l’analyse de données de caractérisation de grands ensembles de stimuli - Application à la caractérisation sensorielle de produits & à la caractérisation de gestes culinaires
title_short Méthodologies statistiques pour le recueil et l’analyse de données de caractérisation de grands ensembles de stimuli - Application à la caractérisation sensorielle de produits & à la caractérisation de gestes culinaires
title_full Méthodologies statistiques pour le recueil et l’analyse de données de caractérisation de grands ensembles de stimuli - Application à la caractérisation sensorielle de produits & à la caractérisation de gestes culinaires
title_fullStr Méthodologies statistiques pour le recueil et l’analyse de données de caractérisation de grands ensembles de stimuli - Application à la caractérisation sensorielle de produits & à la caractérisation de gestes culinaires
title_full_unstemmed Méthodologies statistiques pour le recueil et l’analyse de données de caractérisation de grands ensembles de stimuli - Application à la caractérisation sensorielle de produits & à la caractérisation de gestes culinaires
title_sort méthodologies statistiques pour le recueil et l’analyse de données de caractérisation de grands ensembles de stimuli - application à la caractérisation sensorielle de produits & à la caractérisation de gestes culinaires
publishDate 2019
url http://www.theses.fr/2019NSARG017/document
work_keys_str_mv AT brardmargot methodologiesstatistiquespourlerecueiletlanalysededonneesdecaracterisationdegrandsensemblesdestimuliapplicationalacaracterisationsensorielledeproduitsalacaracterisationdegestesculinaires
AT brardmargot statisticalmethodologiesforthecollectionandanalysisofdatacharacterizinglargesetsofstimuliapplicationtothesensorycharacterizationofproductstothecharacterizationofculinarytechniques
_version_ 1719218600802254848