Statistique des processus stables et des processus à longue mémoire
Ce manuscrit, séparé en deux parties, débute par l’étude des lois et processus -stables et des processus multistables. Après avoir construit et étudié un estimateur basé sur les log-moments de lois stables, on améliore ses performances en le combinant avec l’estimateur de Koutrouvelis. Puis, nous do...
Main Author: | |
---|---|
Other Authors: | |
Language: | fr |
Published: |
2019
|
Subjects: | |
Online Access: | http://www.theses.fr/2019NANT4017/document |
id |
ndltd-theses.fr-2019NANT4017 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-theses.fr-2019NANT40172019-11-27T04:31:24Z Statistique des processus stables et des processus à longue mémoire Statistics of stable processes and long memory processes Stationnarité du second ordre Log-moments Ce manuscrit, séparé en deux parties, débute par l’étude des lois et processus -stables et des processus multistables. Après avoir construit et étudié un estimateur basé sur les log-moments de lois stables, on améliore ses performances en le combinant avec l’estimateur de Koutrouvelis. Puis, nous donnons une méthode approchée afin de simuler rapidement un processus multistable et nous construisons un estimateur de la fonction d’intensité de ce processus à l’aide du rapport de moments empiriques. La deuxième partie est consacrée à l’étude des processus stationnaires du second ordre à longue mémoire en temps continu. Ce processus est échantillonné à des instants d’observations aléatoires tels que les inter-arrivées soient i.i.d. Le comportement du processus échantillonné est alors étudié dans les domaines temporel et fréquentiel. Une étude plus précise dans le cas d’une fonction d’autocovariance à variation régulière permet de montrer l’évolution de la mémoire après échantillonnage. De plus, pour un processus initialement gaussien, on étudie le périodogramme, les sommes partielles et la convergence de l’estimateur local Whittle pour le paramètre de mémoire. This manuscript is divided into two parts. The first one is devoted to the study of - stable distributions and processes and multistable processes. After having built and studied an estimator based on log-moments of the stable distribution, an improvement is obtained by combining it with the Koutrouvelis estimator. Then, we give a nonexact method to simulate efficiently a multistable process, and we construct an estimator of its intensity function using an empirical moments ratio. The second part is devoted to the study of continuous time second order stationary processes with long memory. This process is sampled at random observation times such that inter-arrivals are i.i.d. The behaviour of the sampled process is then studied in time and frequency domains. For autocovariance functions with regular variation, we study the evolution of the memory after sampling. In addition, for an initially Gaussian process, the periodogram, partial sums and convergence of the local Whittle estimator for the memory parameter are studied. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2019NANT4017/document Robet, Caroline 2019-09-20 Nantes Philippe, Anne Lévy Véhel, Jacques |
collection |
NDLTD |
language |
fr |
sources |
NDLTD |
topic |
Stationnarité du second ordre Log-moments |
spellingShingle |
Stationnarité du second ordre Log-moments Robet, Caroline Statistique des processus stables et des processus à longue mémoire |
description |
Ce manuscrit, séparé en deux parties, débute par l’étude des lois et processus -stables et des processus multistables. Après avoir construit et étudié un estimateur basé sur les log-moments de lois stables, on améliore ses performances en le combinant avec l’estimateur de Koutrouvelis. Puis, nous donnons une méthode approchée afin de simuler rapidement un processus multistable et nous construisons un estimateur de la fonction d’intensité de ce processus à l’aide du rapport de moments empiriques. La deuxième partie est consacrée à l’étude des processus stationnaires du second ordre à longue mémoire en temps continu. Ce processus est échantillonné à des instants d’observations aléatoires tels que les inter-arrivées soient i.i.d. Le comportement du processus échantillonné est alors étudié dans les domaines temporel et fréquentiel. Une étude plus précise dans le cas d’une fonction d’autocovariance à variation régulière permet de montrer l’évolution de la mémoire après échantillonnage. De plus, pour un processus initialement gaussien, on étudie le périodogramme, les sommes partielles et la convergence de l’estimateur local Whittle pour le paramètre de mémoire. === This manuscript is divided into two parts. The first one is devoted to the study of - stable distributions and processes and multistable processes. After having built and studied an estimator based on log-moments of the stable distribution, an improvement is obtained by combining it with the Koutrouvelis estimator. Then, we give a nonexact method to simulate efficiently a multistable process, and we construct an estimator of its intensity function using an empirical moments ratio. The second part is devoted to the study of continuous time second order stationary processes with long memory. This process is sampled at random observation times such that inter-arrivals are i.i.d. The behaviour of the sampled process is then studied in time and frequency domains. For autocovariance functions with regular variation, we study the evolution of the memory after sampling. In addition, for an initially Gaussian process, the periodogram, partial sums and convergence of the local Whittle estimator for the memory parameter are studied. |
author2 |
Nantes |
author_facet |
Nantes Robet, Caroline |
author |
Robet, Caroline |
author_sort |
Robet, Caroline |
title |
Statistique des processus stables et des processus à longue mémoire |
title_short |
Statistique des processus stables et des processus à longue mémoire |
title_full |
Statistique des processus stables et des processus à longue mémoire |
title_fullStr |
Statistique des processus stables et des processus à longue mémoire |
title_full_unstemmed |
Statistique des processus stables et des processus à longue mémoire |
title_sort |
statistique des processus stables et des processus à longue mémoire |
publishDate |
2019 |
url |
http://www.theses.fr/2019NANT4017/document |
work_keys_str_mv |
AT robetcaroline statistiquedesprocessusstablesetdesprocessusalonguememoire AT robetcaroline statisticsofstableprocessesandlongmemoryprocesses |
_version_ |
1719296837901352960 |