Summary: | Les maladies cardiovasculaires sont une des principales causes de morbidité et de mortalité au monde. La plus courante est l’infarctus du myocarde définit pathologiquement par la mortalité cellulaire dû à une ischémie prolongée d’une partie du ventricule gauche. L'ischémie est caractérisée par un apport sanguin insuffisant causé par une obstruction d’une artère coronaire. La restauration, en clinique, du flux sanguin, appelée reperfusion, est considérée comme la méthode la plus efficace contre les dommages ischémiques. Paradoxalement, cette restauration du flux sanguin est associée à une exacerbation de la lésion tissulaire, entraînant alors des lésions d'ischémie-reperfusion (I/R). Dans le but de limiter ces lésions, le conditionnement ischémique myocardique est une avancée majeure dans le domaine de la cardioprotection. Ce protocole confère ses effets cardioprotecteurs via le recrutement de divers mécanismes endogènes suivant l’activation de deux voies intracellulaires : la voie RISK (Reperfusion Injury Salvage Kinase) et/ou la voie SAFE (Survivor Activator Factor Enhancer). Ces voies impliquent l'activation de différentes cascades de signalisation et de protéines kinases. En particulier, concernant la voie SAFE, le transducteur de signal et l'activateur de transcription-3 STAT3, a été identifié comme un acteur clé dans le postconditionnement ischémique (PostCI). Il est suggéré que les effets cardioprotecteurs attribués à STAT3 soient liés à ses effets en tant que facteur de transcription et en tant que régulateur de l’activité mitochondriale, mais tout n’est pas encore connu. En revanche, il est admis que STAT3 est activé par la phosphorylation ciblant les résidus tyrosine 705 et sérine 727. Dans nos travaux actuels, nous avions initialement pour objectif d’étudier les rôles cardioprotecteurs mitochondriaux de STAT3 après une I/R et un PostCI. Cependant, nous n'avons pas été en mesure de détecter STAT3 dans les mitochondries de cardiomyocytes adultes de souris, dans des conditions basales et de stress, en utilisant différentes approches. Fait intéressant, nous avons montré une localisation exclusive de STAT3 dans les myocytes cardiaques adultes, le long des tubules T, et nous avons mis en évidence les inconvénients des techniques précédemment utilisées.Outre les rôles putatifs de STAT3 dans les mitochondries, nous avons ciblé ses effets dans la signalisation et la génomique au cours de l'I/R et du PostCI. Nous avons tout d’abord cherché à déterminer, pendant l’I/R et le PostCI, la cinétique temporelle d’activation de STAT3 et des autres kinases de la voie RISK, notamment Akt et les MAPK ERK1 / 2, JNK et p38. En outre, nous avions pour objectif d’étudier les liens entre les voies SAFE et RISK en déchiffrant les liens entre STAT3 et les kinases RISK au cours du PostCI. Nous avons montré qu’après une ischémie et un temps court de reperfusion, STAT3 et ERK1/2 sont activés, et que l’utilisation d’un PostCI active d’autant plus STAT3 en induisant exclusivement la phosphorylation de sa tyrosine. Nous avons également montré que l’interconnexion entre les voies SAFE et RISK, dans le protocole PostCI utilisé, se fait par STAT3 et ERK1/2. À partir de ces résultats, nous nous sommes dirigés vers la génomique grâce à laquelle nous avons étudié l'activité de STAT3 au cours de l'IPoC. À cet égard, nous avons montré que STAT3 est impliqué dans la régulation de la réponse inflammatoire au cours de la PostCI. Dans l’ensemble, cette étude présente une approche globale des fonctions mitochondriales, de signalisation et génomiques de STAT3 dans le contexte de la protection cardiaque === Cardiovascular diseases are leading causes of morbidity and mortality worldwide. Among the mostly prevailing cardiovascular diseases is myocardial infarction, which is pathologically defined as myocardial death due to a prolonged ischemia. Ischemia is an insufficient supply of blood caused by a blockade in the coronary arteries. The early restoration of blood flow is considered the most effective method against the ischemic lesions. Paradoxically, this blood flow restoration is associated with an exacerbation of the tissue injury, leading to the ischemia-reperfusion (I/R) injury. To avoid this injury, the myocardial ischemic conditioning protocol has rejuvenated the field of cardioprotection. This protocol confers its cardioprotective effects via recruiting various endogenous mechanisms following the activation of two intracellular pathways: the reperfusion injury salvage kinase (RISK) or survivor activator factor enhancer (SAFE) pathways. These pathways involve the activation of different signaling cascades and protein kinases. Zooming in through the SAFE pathway, the signal transducer and activator of transcription-3, STAT3, has been identified as a prominent key player in ischemic postconditioning (IPoC). The cardioprotective effects attributed to STAT3 are suggested to be linked to its roles as a transcription factor and as a regulator of the mitochondrial activity, but these are not well studied and elaborated. STAT3 is activated by phosphorylation, which targets the tyrosine 705 and serine 727 residues. In our current work, we initially aimed to investigate the mitochondrial cardioprotective roles of STAT3 following I/R and IPoC. However, we were not able to detect STAT3 in the mitochondria of adult mouse cardiomyocytes under variousbasal and stress conditions using different approaches. Interestingly, we showed an exclusive STAT3 pattern in adult cardiac myocytes, along the T-tubules, and highlighted drawbacks of previously used techniques. Aside from the mitochondrial roles of STAT3, we targeted its signaling and genomic roles during I/R and IPoC. We first aimed to determine, during I/R and IPoC, the temporal kinetics of activation of STAT3 and the other kinases of the RISK pathway including Akt and the MAPKs ERK1/2, JNK and p38. In addition, we aimed to decipher the interlink between the SAFE and RISK pathways through deciphering the interlink between STAT3 and the RISK kinases following IPoC. We showed that a short reperfusion time activates STAT3 and ERK1/2 following ischemia, and that the application of IPoC further activates STAT3 through inducing its tyrosine phosphorylation. We also showed that the interlink between SAFE and RISK pathways, in the IPoC protocol we used, is through STAT3 and ERK1/2. From this signaling level, we moved toward the genomic level whereby we investigated the genomic activity of STAT3 during IPoC. In this regard, we have shown that STAT3 is involved in the regulation of the inflammatory response during IPoC. Overall, this study presents a global approach of STAT3’s mitochondrial, signaling and genomic functions in the context of cardiac protection
|