Dépollution de l'habitacle automobile par photocatalyse et catalyse d'oxydation à froid

L’automobile étant le premier moyen de déplacement en France, la présence de Composés Organiques Volatils (COVs) et de monoxyde de carbone à l’intérieur de l’habitacle, constitue un problème de santé publique. Plusieurs systèmes de dépollution, basés sur des méthodes d'adsorption, existent sur...

Full description

Bibliographic Details
Main Author: Bouhatmi, Marième
Other Authors: Lyon
Language:fr
Published: 2019
Subjects:
540
Online Access:http://www.theses.fr/2019LYSE1036
Description
Summary:L’automobile étant le premier moyen de déplacement en France, la présence de Composés Organiques Volatils (COVs) et de monoxyde de carbone à l’intérieur de l’habitacle, constitue un problème de santé publique. Plusieurs systèmes de dépollution, basés sur des méthodes d'adsorption, existent sur le marché, mais ne permettent qu'une simple rétention des COVs en surface. Parallèlement, des méthodes moins conventionnelles telle que la photocatalyse utilisant le dioxyde de titane, permettent d'oxyder les COVs sous irradiation, en présence d'humidité et à température ambiante. Cependant, la photocatalyse ne permet pas l’oxydation de certains polluants comme le monoxyde de carbone sans ajout de co-catalyseur. Pour éliminer le CO, la catalyse d’oxydation à froid sur dioxyde de manganèse a été étudiée.L’objectif de cette thèse est de développer une solution économique permettant la dépollution de l’habitacle automobile. Ce projet vise à allier à terme l’oxydation photocatalytique d’un COV modèle le n-pentane sur TiO2 P25 et l’oxydation catalytique du monoxyde de carbone à température ambiante sur des MnO2 synthétisés. En photocatalyse, les résultats mettent en évidence que la vitesse de dégradation diminue avec le taux d’humidité relative et augmente avec la puissance lumineuse et la concentration en n-pentane. Les concentrations des intermédiaires réactionnels sont de l’ordre du ppbv pour des ppmv de n-pentane injectés. L’operando DRIFTS a mis en évidence la présence de carbonates à la surface du photocatalyseur. Parallèlement, les expériences de PTR-MS-TOF-SRI et GC-MS ont permis d’identifier la présence de composés carbonylés parmi lesquels du formaldéhyde et la pentan-2-one. Ces intermédiaires ont permis de proposer un mécanisme de la dégradation du n-pentane sur TiO2 P25. Il a également été démontré que l’oxydation photocatalytique du n-pentane par TiO2 P25 permet une minéralisation pratiquement complète quelles que soient les conditions de travail. Pour le système catalytique, des oxydes de manganèse ont été synthétisés par co-précipitation puis calcinés sous oxygène à trois différentes températures : 100°C, 200°C et 300°C. Les performances catalytiques pour l’oxydation du CO ont été évaluées à température ambiante en l’absence d’humidité relative. Des méthodes en température programmée (TPD, TPO, TPR) ont permis de caractériser l’impact de la température de calcination sur la surface du dioxyde de manganèse. Les caractérisations DRX et BET ont mis en évidence la formation de la phase γ-MnO2 stable de 100°C à 300°C et de grande surface spécifique (178-197 m²/g). Les résultats montrent que les catalyseurs permettent une oxydation du monoxyde de carbone à température ambiante. Le catalyseur calciné à 100°C (MnO2-100) présente les meilleures performances avec un taux de conversion initiale de 60% à température ambiante pour 500 ppmv de CO à 10 L/h, 20%O2, (VVH = 25 000 h-1). Les catalyseurs, notamment MnO2-100, se désactivent au cours du temps à température ambiante. Cette désactivation pourrait être due à la capacité du catalyseur à renouveler ses oxygènes du réseau, impliquer dans le processus catalytique === The presence of Volatile Organic Compounds (VOCs) and carbon monoxide in indoor air is a major health issue. The vehicle cabin air is also affected by this problem, being the first mode of transportation. Most of the current depollution systems are based on trapping using adsorption methods, while photocatalytic processes offer the potential to fully degrade VOCs at room temperature in presence of relative humidity. However, carbon monoxide cannot be degraded by photocatalysis without a co-catalyst. Consequently, the room temperature oxidation catalysis of carbon monoxide has been studied. This thesis aims to develop an economical solution for cleaning the vehicle cabin air. This solution is based on crossing the photocatalytic oxidation of a target molecule the n-pentane over by TiO2 P25 and the room temperature oxidation of CO over synthesized MnO2. Results show that the n-pentane degradation rate decreases with the humidity level, and linearly increases with the irradiance power and the VOC concentration. Intermediates species are lowed concentrates (ppbv order) for ppmv of n-pentane used. Operando DRIFTS experiments highlighted the presence of formates surface species during the photocatalytic degradation of n-pentane. PTR-MS-TOF-SRI and GC-MS experiments highlighted the presence of carbonyl compounds as formaldehyde and pentan-2-one in gas phase during the degradation. Those intermediates species allowed us to propose a mechanism for the photocatalytic oxidation of n-pentane over TiO2 P25. Moreover, the efficiency of the photocatalytic degradation of n-pentane over TiO2 has been proved given that an almost complete mineralization is obtained whatever the working conditions. In catalysis, manganese oxides were synthesized by a co-precipitation method then calcined under oxygen at three different temperature: 100°C, 200°C and 300°C. The catalyst performances were evaluated for CO oxidation at room temperature in dry conditions. Temperature programmed methods were used for probing the impact of the calcination temperature on the catalyst surface. DRX and BET characterizations confirmed the formation of the phase γ-MnO2 stable between 100°C and 300°C, and a large surface area (178-197 m²/g). Results highlighted that the synthesized catalysts can oxide the CO at room temperature. The catalyst calcined at 100°C (MnO2-100) show the best performances with an initial conversion rate of 60% for 500 ppmv CO, at 10 L/h at 20% O2 (VVH = 25 000 h-1). However, a deactivation over the time of all the catalysts was observed, especially for MnO2-100. This deactivation could be related to the capacity of the catalyst to renew the oxygen bulk implied in the catalytic process