Solubilité et fluoration d’oxydes d’uranium en milieu liquide ionique

Les liquides ioniques (LI) sont des sels qui fondent à moins de 100 °C. Ils présentent de nombreux avantages par rapport aux solvants habituels, comme une pression de vapeur quasi-nulle et une très bonne stabilité thermique. Dans le cadre de cette thèse, nous avons étudié les LI pour la dissolution...

Full description

Bibliographic Details
Main Author: Joly, Florian
Other Authors: Lille 1
Language:fr
Published: 2019
Subjects:
Online Access:http://www.theses.fr/2019LIL1R043
Description
Summary:Les liquides ioniques (LI) sont des sels qui fondent à moins de 100 °C. Ils présentent de nombreux avantages par rapport aux solvants habituels, comme une pression de vapeur quasi-nulle et une très bonne stabilité thermique. Dans le cadre de cette thèse, nous avons étudié les LI pour la dissolution et la fluoration d’oxydes d’uranium. Ce manuscrit commence par un chapitre bibliographique présentant la conversion de l’uranium dans le cycle du combustible, la cristallochimie des fluorures d’uranium et s’achève par une présentation générale des liquides ioniques. Un premier travail a concerné l’étude de la solubilité de deux oxydes d’uranium (UO2 et UO3) dans des LI, fréquemment rencontrés dans la littérature. Les résultats les plus intéressants ont été obtenus à haute température (180°C), et notamment avec les liquides ioniques [Hbet][NTf2] et [Bumim][PF6]. Pour le premier, nous observons une bonne solubilité de l’uranium. [Bumim][PF6] permet quant à lui la fluoration de l’uranium à partir de UO2 et la précipitation de tétrafluorure d’uranium UF4. Dans le troisième chapitre, nous avons tenté d’améliorer la solubilité d’oxydes d’uranium dans les LI grâce à des molécules additionnelles. Un résultat marquant a été la précipitation de tétrafluorure d’uranium hydraté (UF4.xH2O), suite à l’ajout d’acide fluorhydrique en solution aqueuse. Le chapitre suivant s’est intéressé à la formation de UF4 à partir du mélange UO2-[Bumim][PF6] en conditions ionothermales (180 °C). A l’aide de méthodes spectroscopiques (RMN, EXAFS/XANES), nous avons montré que cette réaction était initiée par les traces d’eau présentes dans le système (14 ppm). L’hydrolyse du LI engendre la libération de HF dissous et conduit à la précipitation de UF4 anhydre. Ce document s’achève par l’utilisation d’un liquide ionique non-commercial [Emim][F(HF)2,3], stabilisant de l’acide fluorhydrique dans sa structure. A 100°C, ce LI fluoré permet la solubilisation complète des oxydes d’uranium utilisés. === Ionic liquids (IL) are molten salts with a melting point below 100 °C. They have numerous advantages compared to usual solvents, including a very low vapor pressure and a good thermal stability. In the context of this thesis, we studied IL for the dissolution and fluorination of uranium oxides. This manuscript starts by a bibliographical study presenting the conversion of uranium in the nuclear fuel cycle, the crystal chemistry of uranium fluorides and ends with a general presentation of ionic liquids. In the second chapter, the solubility of two uranium oxides (UO2 and UO3) is studied in IL commonly used in the literature. The most interesting results are obtained at high temperature (180 °C) with [Hbet][NTf2] and [Bumim][PF6]. With the first one, we observe a good solubility of uranium, whereas [Bumim][PF6] allows the fluorination of UO2 yielding uranium tetrafluoride UF4. In the next chapter, we tried to increase uranium oxides solubility in IL using additional molecules. A significant result is the precipitation of hydrated uranium tetrafluoride (UF4.xH2O) from the addition of aqueous hydrofluoric acid. The following chapter studies the formation of UF4 from the UO2-[Bumim][PF6] mixture in ionothermal conditions (180 °C). Thanks to spectroscopic methods (NMR, XANES/EXAFS), we show that the reaction is initiated by traces of water in the system (14 ppm). Hydrolysis of the IL liberates HF and leads to the precipitation of anhydrous UF4. This documents ends with the use of a non-commercial IL [Emim][F(HF)2,3] which stabilizes hydrofluoric acid in its structure. At 100 °C, this fluorinated IL can fully digest all the uranium oxides that we selected.