Designing Two-Echelon Distribution Networks under Uncertainty

Avec la forte croissance du e-commerce et l'augmentation continue de la population des villes impliquant des niveaux de congestion plus élevés, les réseaux de distribution doivent déployer des échelons supplémentaires pour offrir un ajustement dynamique aux besoins des entreprises au cours du t...

Full description

Bibliographic Details
Main Author: Ben Mohamed, Imen
Other Authors: Bordeaux
Language:en
Published: 2019
Subjects:
Online Access:http://www.theses.fr/2019BORD0073
Description
Summary:Avec la forte croissance du e-commerce et l'augmentation continue de la population des villes impliquant des niveaux de congestion plus élevés, les réseaux de distribution doivent déployer des échelons supplémentaires pour offrir un ajustement dynamique aux besoins des entreprises au cours du temps et faire face aux aléas affectant l’activité de distribution. Dans ce contexte, les praticiens s'intéressent aux réseaux de distribution à deux échelons. Dans cette thèse, nous commençons par présenter une revue complète des problèmes de design des réseaux de distribution et souligner des caractéristiques essentielles de modélisation. Ces aspects impliquent la structure à deux échelons, l’aspect multi-période, l’incertitude et les méthodes de résolution. Notre objectif est donc, d’élaborer un cadre complet pour le design d’un réseau de distribution efficace à deux échelons, sous incertitude et multi-périodicité, dans lequel les produits sont acheminés depuis les plateformes de stockage (WP) vers les plateformes de distribution (DP) avant d'être transportés vers les clients. Ce cadre est caractérisé par une hiérarchie temporelle entre le niveau de design impliquant des décisions relatives à la localisation des plateformes et à la capacité allouée aux DPs sur une échelle de temps annuelle, et le niveau opérationnel concernant des décisions journalières de transport. % sur une base journalière.Dans une première étude, nous introduisons le cadre complet pour le problème de design de réseaux de distribution à deux échelons avec une demande incertaine, une demande et un coût variables dans le temps. Le problème est formulé comme un programme stochastique à plusieurs étapes. Il implique au niveau stratégique des décisions de localisation des DPs ainsi que des décisions d'affectation des capacités aux DPs sur plusieurs périodes de design, et au niveau opérationnel des décisions de transport sous forme d'arcs origine-destination. Ensuite, nous proposons deux modèles alternatifs basés sur la programmation stochastique à deux étapes avec recours, et les résolvons par une approche de décomposition de Benders intégrée à une technique d’approximation moyenne d’échantillon (SAA). Par la suite, nous nous intéressons à la livraison du dernier kilomètre dans un contexte urbain où les décisions de transport dans le deuxième échelon sont caractérisées par des tournées de véhicules. Un problème multi-période stochastique de localisation-routage à deux échelons avec capacité (2E-SM-CLRP) est défini, dans lequel les décisions de localisation concernent les WPs et les DPs. Le modèle est un programme stochastique à deux étapes avec recours en nombre entier. Nous développons un algorithme de décomposition de Benders. Les décisions de localisation et de capacité sont déterminées par la solution du problème maître de Benders. Le sous-problème résultant est un problème multi-dépôt de tournées de véhicule avec des dépôts et véhicules capacitaires qui est résolu par un algorithme de branch-cut-and-price.Enfin, nous étudions le cadre à plusieurs étapes proposé pour le problème stochastique multi-période de design de réseaux de distribution à deux échelons et évaluons sa tractabilité. Pour ceci, nous développons une heuristique à horizon glissant qui permet d’obtenir des bornes de bonne qualité et des solutions de design pour le modèle à plusieurs étapes. === With the high growth of e-commerce and the continuous increase in cities population contrasted with the rising levels of congestion, distribution schemes need to deploy additional echelons to offer more dynamic adjustment to the requirement of the business over time and to cope with all the random factors. In this context, a two-echelon distribution network is nowadays investigated by the practitioners.In this thesis, we first present a global survey on distribution network design problems and point out many critical modeling features, namely the two-echelon structure, the multi-period setting, the uncertainty and solution approaches. The aim, here, is to propose a comprehensive framework for the design of an efficient two-echelon distribution network under multi-period and stochastic settings in which products are directed from warehouse platforms (WPs) to distribution platforms (DPs) before being transported to customers. A temporal hierarchy characterizes the design level dealing with facility-location and capacity decisions over a set of design periods, while the operational level involves transportation decisions on a daily basis.Then, we introduce the comprehensive framework for the two-echelon distribution network design problem under uncertain demand, and time-varying demand and cost, formulated as a multi-stage stochastic program. This work looks at a generic case for the deployment of a retailer's distribution network. Thus, the problem involves, at the strategic level, decisions on the number and location of DPs along the set of design periods as well as decisions on the capacity assignment to calibrate DP throughput capacity. The operational decisions related to transportation are modeled as origin-destination arcs. Subsequently, we propose alternative modeling approaches based on two-stage stochastic programming with recourse, and solve the resulting models using a Benders decomposition approach integrated with a sample average approximation (SAA) technique.Next, we are interested in the last-mile delivery in an urban context where transportation decisions involved in the second echelon are addressed through multi-drop routes. A two-echelon stochastic multi-period capacitated location-routing problem (2E-SM-CLRP) is defined in which facility-location decisions concern both WPs and DPs. We model the problem using a two-stage stochastic program with integer recourse. To solve the 2E-SM-CLRP, we develop a Benders decomposition algorithm. The location and capacity decisions are fixed from the solution of the Benders master problem. The resulting subproblem is a capacitated vehicle-routing problem with capacitated multi-depot (CVRP-CMD) and is solved using a branch-cut-and-price algorithm.Finally, we focus on the multi-stage framework proposed for the stochastic multi-period two-echelon distribution network design problem and evaluate its tractability. A scenario tree is built to handle the set of scenarios representing demand uncertainty. We present a compact formulation and develop a rolling horizon heuristic to produce design solutions for the multi-stage model. It provides good quality bounds in a reasonable computational times.