Summary: | Le modèle ΛCDM permet de décrire avec une grande précision la plupart des présentes observations cosmologiques. Cependant, l'un de ses paramètres, σ 8, mesurant l'amplitude de fluctuations de la matière, présente une discordance entre sa valeur contrainte par le spectre de puissance angulaire du CMB de la mission Planck, les Cls, et celle déterminée à partir des amas SZ dans l'univers proche. Dans le présent travail on explore divers extensions du modèle ΛCDM comme origines possibles de cette anomalie. Pour tester les effets de ces extensions, nous avons effectué une analyse Monte Carlo on l'on compare les contraintes sur σ 8 à partir de ΛCDM avec celles résultantes de ces extensions, et ceci en utilisant principalement le spectre de puissance CMB seul ou combiné avec des comptages d'amas. Ces derniers sont basés sur différentes relations masse observables et couvrent différents redshift : des amas de rayons X dans l'univers local, des amas de la mission SZ Planck dans l'univers proche ou une estimation des amas détectés par leur richesse photométrique à partir du la future mission Euclid. Du fait qu'une mauvaise détermination de l'étalonnage de la masse des amas pourrait également être la raison de cette divergence, notre approche consistait, lorsqu'on combinait les deux sondes issues des amas et du CMB, à laisser le facteur d'étalonnage libre afin qu'il soit contraint comme les autres paramètres cosmologiques par les deux données. Dans le cas d'introduction de trois neutrinos massifs dégénérés, nous avons trouvé qu'ils n'ont aucun effet significatif sur la correction de l'écart entre les contraintes issues de comptage CMB et ceux issues des Xray ou SZ cluster. Nous avons ensuite permis à l'indice de croissance ƴ de varier. Nous trouvons une corrélation entre ƴ et le paramètre de calibration masse-observable des amas détectés par rayons X qui n'est pas affecté par la présence ou non des neutrinos massifs. [...] === The ΛCDM model has proved successful in describing to a high precision most of nowadays cosmological observations. However, one of its parameters, σ 8, measuring the present matter amplitude fluctuations, constrained from CMB angular power spectrum, the Cls, was found by the Planck mission, in significant tension with value constrained by SZ galaxy cluster counts in the near universe. In the present work we investigate extensions to ΛCDM model as possible origins behind this discrepancy. To test these extensions, we performed a Monte Carlo analysis to compare constraints on σ 8 in ΛCDM with constraints under these extensions, using mainly CMB Cls combined with cluster counts sample. The later were based on different mass observables relations and covered different redshift ranges: X-ray cluster in the local universe, SZ Planck mission clusters from the near universe or photometric richness estimated detected clusters from future high redshift upcoming Euclid alike mission. Because an improper determination of the calibration of cluster mass function could also be behind this discrepancy, our approach was, when combined with CMB, to leave the calibration factor free to vary and be constrained by data. Introducing three degenerate massive neutrinos, we found that they have no significant effect on fixing the discrepancy between CMB and Xray or SZ cluster counts. We then allowed the growth index ƴ to vary. We find a correlation in the confidence space between ƴ and the X-ray mass observable factor not affected by the presence of massive neutrinos, indicating that a modifying gravity is favored over massive neutrinos as a way to alleviate the tension. However, when a SZ cluster sample covering a larger redshift range was used, we found that the correlation between ƴ and the calibration factor, is constrained by the evolution of the growth through redshift and limited to a region where it cannot fix the discrepancy. [...]
|