Multi-dimensional Teager-Kaiser signal processing for improved characterization using white light interferometry

L'utilisation de franges d'interférence en lumière blanche comme une sonde optique en microscopie interférométrique est d'une importance croissante dans la caractérisation des matériaux, la métrologie de surface et de l'imagerie médicale. L'Interférométrie en lumière blanche...

Full description

Bibliographic Details
Main Author: Gianto, Gianto
Other Authors: Strasbourg
Language:en
Published: 2018
Subjects:
CSI
Online Access:http://www.theses.fr/2018STRAD026/document
id ndltd-theses.fr-2018STRAD026
record_format oai_dc
spelling ndltd-theses.fr-2018STRAD0262019-06-24T16:25:07Z Multi-dimensional Teager-Kaiser signal processing for improved characterization using white light interferometry Traitement du signal Teager-Kaiser multi-dimensionel pour la caractérisation améliorée avec l'interférométrie en lumière blanche CSI WLSI Opérateur énergétique Teager-Kaiser Traitement de signal Interferométrie Frange d'interférence Coherence Scanning Interferometry White Light Scanning Interferometry Teager-Kaiser energy operator Signal processing Multi-dimensional TK Interferometry Fringe signal 3D surface profiler 621.38 006.3 L'utilisation de franges d'interférence en lumière blanche comme une sonde optique en microscopie interférométrique est d'une importance croissante dans la caractérisation des matériaux, la métrologie de surface et de l'imagerie médicale. L'Interférométrie en lumière blanche est une technique basée sur la détection de l'enveloppe de franges d'interférence. Il a été démontré antérieurement, la capacité des approches 2D à rivaliser avec certaines méthodes classiques utilisées dans le domaine de l'interférométrie, en termes de robustesse et de temps de calcul. En outre, alors que la plupart des méthodes tiennent compte seulement des données 1 D, il semblerait avantageux de prendre en compte le voisinage spatial utilisant des approches multidimensionnelles (2D/3D), y compris le paramètre de temps afin d'améliorer les mesures. Le but de ce projet de thèse est de développer de nouvelles approches n-D qui sont appropriées pour une meilleure caractérisation des surfaces plus complexes et des couches transparentes. The use of white light interference fringes as an optical probe in microscopy is of growing importance in materials characterization, surface metrology and medical imaging. Coherence Scanning Interferometry (CSI, also known as White Light Scanning Interferometry, WSLI) is well known for surface roughness and topology measurement [1]. Full-Field Optical Coherence Tomography (FF-OCT) is the version used for the tomographic analysis of complex transparent layers. Both techniques generally make use of some sort of fringe scanning along the optical axis and the acquisition of a stack of xyz images. Image processing is then used to identify the fringe envelopes along z at each pixel in order to measure the positions of either a single surface or of multiple scattering objects within a layer.In CSI, the measurement of surface shape generally requires peak or phase extraction of the mono dimensional fringe signal. Most of the methods are based on an AM-FM signal model, which represents the variation in light intensity measured along the optical axis of an interference microscope [2]. We have demonstrated earlier [3, 4] the ability of 2D approaches to compete with some classical methods used in the field of interferometry, in terms of robustness and computing time. In addition, whereas most methods only take into account the 1D data, it would seem advantageous to take into account the spatial neighborhood using multidimensional approaches (2D, 3D, 4D), including the time parameter in order to improve the measurements.The purpose of this PhD project is to develop new n-D approaches that are suitable for improved characterization of more complex surfaces and transparent layers. In addition, we will enrich the field of study by means of heterogeneous image processing from multiple sensor sources (heterogeneous data fusion). Applications considered will be in the fields of materials metrology, biomaterials and medical imaging. Electronic Thesis or Dissertation Text en http://www.theses.fr/2018STRAD026/document Gianto, Gianto 2018-09-14 Strasbourg Montgomery, Paul
collection NDLTD
language en
sources NDLTD
topic CSI
WLSI
Opérateur énergétique Teager-Kaiser
Traitement de signal
Interferométrie
Frange d'interférence
Coherence Scanning Interferometry
White Light Scanning Interferometry
Teager-Kaiser energy operator
Signal processing
Multi-dimensional TK
Interferometry
Fringe signal
3D surface profiler
621.38
006.3
spellingShingle CSI
WLSI
Opérateur énergétique Teager-Kaiser
Traitement de signal
Interferométrie
Frange d'interférence
Coherence Scanning Interferometry
White Light Scanning Interferometry
Teager-Kaiser energy operator
Signal processing
Multi-dimensional TK
Interferometry
Fringe signal
3D surface profiler
621.38
006.3
Gianto, Gianto
Multi-dimensional Teager-Kaiser signal processing for improved characterization using white light interferometry
description L'utilisation de franges d'interférence en lumière blanche comme une sonde optique en microscopie interférométrique est d'une importance croissante dans la caractérisation des matériaux, la métrologie de surface et de l'imagerie médicale. L'Interférométrie en lumière blanche est une technique basée sur la détection de l'enveloppe de franges d'interférence. Il a été démontré antérieurement, la capacité des approches 2D à rivaliser avec certaines méthodes classiques utilisées dans le domaine de l'interférométrie, en termes de robustesse et de temps de calcul. En outre, alors que la plupart des méthodes tiennent compte seulement des données 1 D, il semblerait avantageux de prendre en compte le voisinage spatial utilisant des approches multidimensionnelles (2D/3D), y compris le paramètre de temps afin d'améliorer les mesures. Le but de ce projet de thèse est de développer de nouvelles approches n-D qui sont appropriées pour une meilleure caractérisation des surfaces plus complexes et des couches transparentes. === The use of white light interference fringes as an optical probe in microscopy is of growing importance in materials characterization, surface metrology and medical imaging. Coherence Scanning Interferometry (CSI, also known as White Light Scanning Interferometry, WSLI) is well known for surface roughness and topology measurement [1]. Full-Field Optical Coherence Tomography (FF-OCT) is the version used for the tomographic analysis of complex transparent layers. Both techniques generally make use of some sort of fringe scanning along the optical axis and the acquisition of a stack of xyz images. Image processing is then used to identify the fringe envelopes along z at each pixel in order to measure the positions of either a single surface or of multiple scattering objects within a layer.In CSI, the measurement of surface shape generally requires peak or phase extraction of the mono dimensional fringe signal. Most of the methods are based on an AM-FM signal model, which represents the variation in light intensity measured along the optical axis of an interference microscope [2]. We have demonstrated earlier [3, 4] the ability of 2D approaches to compete with some classical methods used in the field of interferometry, in terms of robustness and computing time. In addition, whereas most methods only take into account the 1D data, it would seem advantageous to take into account the spatial neighborhood using multidimensional approaches (2D, 3D, 4D), including the time parameter in order to improve the measurements.The purpose of this PhD project is to develop new n-D approaches that are suitable for improved characterization of more complex surfaces and transparent layers. In addition, we will enrich the field of study by means of heterogeneous image processing from multiple sensor sources (heterogeneous data fusion). Applications considered will be in the fields of materials metrology, biomaterials and medical imaging.
author2 Strasbourg
author_facet Strasbourg
Gianto, Gianto
author Gianto, Gianto
author_sort Gianto, Gianto
title Multi-dimensional Teager-Kaiser signal processing for improved characterization using white light interferometry
title_short Multi-dimensional Teager-Kaiser signal processing for improved characterization using white light interferometry
title_full Multi-dimensional Teager-Kaiser signal processing for improved characterization using white light interferometry
title_fullStr Multi-dimensional Teager-Kaiser signal processing for improved characterization using white light interferometry
title_full_unstemmed Multi-dimensional Teager-Kaiser signal processing for improved characterization using white light interferometry
title_sort multi-dimensional teager-kaiser signal processing for improved characterization using white light interferometry
publishDate 2018
url http://www.theses.fr/2018STRAD026/document
work_keys_str_mv AT giantogianto multidimensionalteagerkaisersignalprocessingforimprovedcharacterizationusingwhitelightinterferometry
AT giantogianto traitementdusignalteagerkaisermultidimensionelpourlacaracterisationamelioreeaveclinterferometrieenlumiereblanche
_version_ 1719207884761333760