Summary: | Les matériaux piézoélectriques et ferroélectriques présentent un comportementélectromécanique couplé. Cette particularité leur a permis d’être utilisés dans de nombreusesapplications telles que les applications de capteur, actionneur, transformateur et récupérateurd’énergie. En outre, en raison de leur comportement non linéaire et dissipatif, les matériauxferroélectriques sont de plus en plus utilisés dans le domaine de l’électronique en tant quecapacité accordable, mémoire non volatile, oscillateur et filtre. La performance et la fiabilitéde ces systèmes dépendent directement des propriétés ferroélectriques et piézoélectriques dumatériau, qui nécessite par conséquent d’être caractérisé. Les propriétés piézoélectriques,ferroélectriques, ferroélastiques et diélectriques des matériaux ferroélectriques ont été le sujetde nombreuses études. Pourtant, les conditions d’essai restent difficiles à maîtriser car lespropriétés thermiques, mécaniques et électriques de ces matériaux sont fortement couplées.Dans cette thèse, un dispositif de mesure de champ de déformation a été conçu pourcaractériser le comportement piézoélectrique et ferroélectrique des céramiquesferroélectriques. Ce dispositif utilise un banc optique ainsi qu’un algorithme de Corrélationd’Images Numériques (CIN) 2D appelé CorreliRT3. Cet algorithme est basé sur une approcheglobale et réduit les erreurs de mesure de déplacement en s’appuyant sur les équationsd’équilibre de la mécanique des solides. Grâce au banc de caractérisation par CIN, il estmontré que les déformations piézoélectriques et ferroélectriques peuvent être mesurées avecune incertitude d’environ 10-5. Cette incertitude est atteinte aussi bien pour des sollicitationssimples que couplées (champ électrique et/ou contrainte mécanique). Il est aussi montré quele banc expérimental permet de vérifier les conditions d’essai en caractérisant l’hétérogénéitédes déformations lors d’un essai matériau.Dans les deux derniers chapitres, un matériau ferroélectrique est caractérisé souschamp électrique et sous contrainte mécanique. Le comportement du matériau est présenté etdiscuté dans les différentes configurations de chargement. Les propriétés matériau, telles queles coefficients piézoélectriques (d33, d31), sont extraites et étudiées en fonction du champélectrique et de la contrainte. Les résultats montrent que la CIN est capable de mesurer etcaractériser le comportement et les propriétés des matériaux ferroélectriques etpiézoélectriques. L’avantage de la CIN étant que, contrairement aux méthodes de mesureclassiques, celle-ci ne perturbe pas les conditions d’essai (mesure sans contact) et permette dedétecter la présence d’erreurs systématiques. === Piezoelectric and ferroelectric materials exhibit a coupled electromechanicalbehaviour. This property allows a use in various kinds of applications such as sensors,actuators, harvesting devices or converters. In addition, due to their non-linear and dissipativebehaviour, ferroelectric materials are increasingly used in electronic applications such astunable capacitors, non-volatile memory, oscillators and filters. The performance andreliability of such devices depend on the material electromechanical properties, whichconsequently need to be characterised. In the past decades, such characterisation was largelydeveloped and the piezoelectric, ferroelectric, ferroelastic and dielectric properties offerroelectrics were the subject of numerous studies. Yet the test conditions are difficult tocontrol due to the strong interplay between thermal, mechanical and dielectric properties.In this work, a full-field measurement apparatus has been designed to characterise thepiezoelectric and ferroelectric strain behaviour of ferroelectric ceramics. This apparatus usesan optical setup and a 2D Digital Image Correlation (DIC) algorithm named CorreliRT3. Thealgorithm is based on a global approach and reduces the displacement field errors using thebalance equations of solid mechanics. It is shown that piezoelectric and ferroelectric strainscan be measured with an uncertainty around 10-5 by using the developed setup. Thisuncertainty is reached under uncoupled or coupled loading (electric field and/or stress). It isalso shown that the experimental setup can control the test conditions by characterising thestrain heterogeneity during the test.In the two last chapters, a ferroelectric material is characterised under electric field andstress. The material behaviour is presented and discussed in the different loadingconfigurations. Material properties, such as the longitudinal and transverse piezoelectriccoefficients (d33, d31) are extracted and analysed as a function of the electric field and stress.The results show that the DIC technique is able to measure and characterise the behaviour andthe properties of ferroelectric and piezoelectric materials. The main benefits of this techniqueis that, contrary to classical measurement techniques, the measurement does not alter the testconditions. Moreover, DIC is able to detect test anomalies such as strain heterogeneities
|