Parallelisation of hybrid metaheuristics for COP solving

L’Optimisation Combinatoire (OC) est un domaine de recherche qui est en perpétuel changement. Résoudre un problème d’optimisation combinatoire (POC) consiste essentiellement à trouver la ou les meilleures solutions dans un ensemble des solutions réalisables appelé espace de recherche qui est général...

Full description

Bibliographic Details
Main Author: Labidi, Mohamed Khalil
Other Authors: Paris Sciences et Lettres
Language:en
Published: 2018
Subjects:
004
Online Access:http://www.theses.fr/2018PSLED029/document
id ndltd-theses.fr-2018PSLED029
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Calcul parallèle
Métaheuristique
Optimisation Combinatoire
Algorithme de coupes et branchements
Hybridation
Conception de réseaux
Algorithme de séparation et évaluation
Parallel computing
Metaheuristic
Combinatorial Optimization
Branch-And-Cut algorithm
Hybridization
Network Design
Branch-And-Bound algorithm
004
spellingShingle Calcul parallèle
Métaheuristique
Optimisation Combinatoire
Algorithme de coupes et branchements
Hybridation
Conception de réseaux
Algorithme de séparation et évaluation
Parallel computing
Metaheuristic
Combinatorial Optimization
Branch-And-Cut algorithm
Hybridization
Network Design
Branch-And-Bound algorithm
004
Labidi, Mohamed Khalil
Parallelisation of hybrid metaheuristics for COP solving
description L’Optimisation Combinatoire (OC) est un domaine de recherche qui est en perpétuel changement. Résoudre un problème d’optimisation combinatoire (POC) consiste essentiellement à trouver la ou les meilleures solutions dans un ensemble des solutions réalisables appelé espace de recherche qui est généralement de cardinalité exponentielle en la taille du problème. Pour résoudre des POC, plusieurs méthodes ont été proposées dans la littérature. On distingue principalement les méthodes exactes et les méthodes d’approximation. Ne pouvant pas viser une résolution exacte de problèmes NP-Complets lorsque la taille du problème dépasse une certain seuil, les chercheurs on eu de plus en plus recours, depuis quelques décennies, aux algorithmes dits hybrides (AH) ou encore à au calcul parallèle. Dans cette thèse, nous considérons la classe POC des problèmes de conception d'un réseau fiable. Nous présentons un algorithme hybride parallèle d'approximation basé sur un algorithme glouton, un algorithme de relaxation Lagrangienne et un algorithme génétique, qui produit des bornes inférieure et supérieure pour les formulations à base de flows. Afin de valider l'approche proposée, une série d'expérimentations est menée sur plusieurs applications: le Problème de conception d'un réseau k-arête-connexe avec contrainte de borne (kHNDP) avec L=2,3, le problème de conception d'un réseau fiable Steiner k-arête-connexe (SkESNDP) et ensuite deux problèmes plus généraux, à savoir le kHNDP avec L >= 2 et le problème de conception d'un réseau fiable k-arête-connexe (kESNDP). L'étude expérimentale de la parallélisation est présentée après cela. Dans la dernière partie de ce travail, nous présentons deux algorithmes parallèles exactes: un Branch-and-Bound distribué et un Branch-and-Cut distribué. Une série d'expérimentation a été menée sur une grappe de 128 processeurs, et des accélération intéressantes ont été atteintes pour la résolution du problèmes kHNDP avec k=3 et L=3. === Combinatorial Optimization (CO) is an area of research that is in a constant progress. Solving a Combinatorial Optimization Problem (COP) consists essentially in finding the best solution (s) in a set of feasible solutions called a search space that is usually exponential in cardinality in the size of the problem. To solve COPs, several methods have been proposed in the literature. A distinction is made mainly between exact methods and approximation methods. Since it is not possible to aim for an exact resolution of NP-Complete problems when the size of the problem exceeds a certain threshold, researchers have increasingly used Hybrid (HA) or parallel computing algorithms in recent decades. In this thesis we consider the COP class of Survivability Network Design Problems. We present an approximation parallel hybrid algorithm based on a greedy algorithm, a Lagrangian relaxation algorithm and a genetic algorithm which produces both lower and upper bounds for flow-based formulations. In order to validate the proposed approach, a series of experiments is carried out on several applications: the k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP) when L = 2,3, The problem of the Steiner k-Edge-Connected Network Design Problem (SkESNDP) and then, two more general problems namely the kHNDP when L >= 2 and the k-Edge-Connected Network Design Problem (kESNDP). The experimental study of the parallelisation is presented after that. In the last part of this work, we present a two parallel exact algorithms: a distributed Branch-and-Bound and a distributed Branch-and-Cut. A series of experiments has been made on a cluster of 128 processors and interesting speedups has been reached in kHNDP resolution when k=3 and L=3.
author2 Paris Sciences et Lettres
author_facet Paris Sciences et Lettres
Labidi, Mohamed Khalil
author Labidi, Mohamed Khalil
author_sort Labidi, Mohamed Khalil
title Parallelisation of hybrid metaheuristics for COP solving
title_short Parallelisation of hybrid metaheuristics for COP solving
title_full Parallelisation of hybrid metaheuristics for COP solving
title_fullStr Parallelisation of hybrid metaheuristics for COP solving
title_full_unstemmed Parallelisation of hybrid metaheuristics for COP solving
title_sort parallelisation of hybrid metaheuristics for cop solving
publishDate 2018
url http://www.theses.fr/2018PSLED029/document
work_keys_str_mv AT labidimohamedkhalil parallelisationofhybridmetaheuristicsforcopsolving
AT labidimohamedkhalil parallelisationdemetaheuristiqueshybridespourlaresolutiondepoc
_version_ 1719303538233835520
spelling ndltd-theses.fr-2018PSLED0292019-12-15T03:26:05Z Parallelisation of hybrid metaheuristics for COP solving Parallélisation de métaheuristiques hybrides pour la résolution de POC Calcul parallèle Métaheuristique Optimisation Combinatoire Algorithme de coupes et branchements Hybridation Conception de réseaux Algorithme de séparation et évaluation Parallel computing Metaheuristic Combinatorial Optimization Branch-And-Cut algorithm Hybridization Network Design Branch-And-Bound algorithm 004 L’Optimisation Combinatoire (OC) est un domaine de recherche qui est en perpétuel changement. Résoudre un problème d’optimisation combinatoire (POC) consiste essentiellement à trouver la ou les meilleures solutions dans un ensemble des solutions réalisables appelé espace de recherche qui est généralement de cardinalité exponentielle en la taille du problème. Pour résoudre des POC, plusieurs méthodes ont été proposées dans la littérature. On distingue principalement les méthodes exactes et les méthodes d’approximation. Ne pouvant pas viser une résolution exacte de problèmes NP-Complets lorsque la taille du problème dépasse une certain seuil, les chercheurs on eu de plus en plus recours, depuis quelques décennies, aux algorithmes dits hybrides (AH) ou encore à au calcul parallèle. Dans cette thèse, nous considérons la classe POC des problèmes de conception d'un réseau fiable. Nous présentons un algorithme hybride parallèle d'approximation basé sur un algorithme glouton, un algorithme de relaxation Lagrangienne et un algorithme génétique, qui produit des bornes inférieure et supérieure pour les formulations à base de flows. Afin de valider l'approche proposée, une série d'expérimentations est menée sur plusieurs applications: le Problème de conception d'un réseau k-arête-connexe avec contrainte de borne (kHNDP) avec L=2,3, le problème de conception d'un réseau fiable Steiner k-arête-connexe (SkESNDP) et ensuite deux problèmes plus généraux, à savoir le kHNDP avec L >= 2 et le problème de conception d'un réseau fiable k-arête-connexe (kESNDP). L'étude expérimentale de la parallélisation est présentée après cela. Dans la dernière partie de ce travail, nous présentons deux algorithmes parallèles exactes: un Branch-and-Bound distribué et un Branch-and-Cut distribué. Une série d'expérimentation a été menée sur une grappe de 128 processeurs, et des accélération intéressantes ont été atteintes pour la résolution du problèmes kHNDP avec k=3 et L=3. Combinatorial Optimization (CO) is an area of research that is in a constant progress. Solving a Combinatorial Optimization Problem (COP) consists essentially in finding the best solution (s) in a set of feasible solutions called a search space that is usually exponential in cardinality in the size of the problem. To solve COPs, several methods have been proposed in the literature. A distinction is made mainly between exact methods and approximation methods. Since it is not possible to aim for an exact resolution of NP-Complete problems when the size of the problem exceeds a certain threshold, researchers have increasingly used Hybrid (HA) or parallel computing algorithms in recent decades. In this thesis we consider the COP class of Survivability Network Design Problems. We present an approximation parallel hybrid algorithm based on a greedy algorithm, a Lagrangian relaxation algorithm and a genetic algorithm which produces both lower and upper bounds for flow-based formulations. In order to validate the proposed approach, a series of experiments is carried out on several applications: the k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP) when L = 2,3, The problem of the Steiner k-Edge-Connected Network Design Problem (SkESNDP) and then, two more general problems namely the kHNDP when L >= 2 and the k-Edge-Connected Network Design Problem (kESNDP). The experimental study of the parallelisation is presented after that. In the last part of this work, we present a two parallel exact algorithms: a distributed Branch-and-Bound and a distributed Branch-and-Cut. A series of experiments has been made on a cluster of 128 processors and interesting speedups has been reached in kHNDP resolution when k=3 and L=3. Electronic Thesis or Dissertation Text en http://www.theses.fr/2018PSLED029/document Labidi, Mohamed Khalil 2018-09-20 Paris Sciences et Lettres Université de Tunis El-Manar. Faculté des Sciences de Tunis (Tunisie) Mahjoub, Ali Ridha Mahjoub, Zaher