Nonlinear network wave equations : periodic solutions and graph characterizations

Dans cette thèse, nous étudions les équations d’ondes non-linéaires discrètes dans des réseaux finis arbitraires. C’est un modèle général, où le Laplacien continu est remplacé par le Laplacien de graphe. Nous considérons une telle équation d’onde avec une non-linéarité cubique sur les nœuds du graph...

Full description

Bibliographic Details
Main Author: Khames, Imene
Other Authors: Normandie
Language:en
Published: 2018
Subjects:
Online Access:http://www.theses.fr/2018NORMIR04/document
id ndltd-theses.fr-2018NORMIR04
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Equation d'onde de graphe
Laplacien de graphe
Modèle φ4
Modes normaux
Localisation
Dynamical systems
Networks
Graph Laplacian
Nonlinear oscillations
Normal modes
Network wave equation
Φ4 model
Localization

spellingShingle Equation d'onde de graphe
Laplacien de graphe
Modèle φ4
Modes normaux
Localisation
Dynamical systems
Networks
Graph Laplacian
Nonlinear oscillations
Normal modes
Network wave equation
Φ4 model
Localization

Khames, Imene
Nonlinear network wave equations : periodic solutions and graph characterizations
description Dans cette thèse, nous étudions les équations d’ondes non-linéaires discrètes dans des réseaux finis arbitraires. C’est un modèle général, où le Laplacien continu est remplacé par le Laplacien de graphe. Nous considérons une telle équation d’onde avec une non-linéarité cubique sur les nœuds du graphe, qui est le modèle φ4 discret, décrivant un réseau mécanique d’oscillateurs non-linéaires couplés ou un réseau électrique où les composantes sont des diodes ou des jonctions Josephson. L’équation d’onde linéaire est bien comprise en termes de modes normaux, ce sont des solutions périodiques associées aux vecteurs propres du Laplacien de graphe. Notre premier objectif est d’étudier la continuation des modes normaux dans le régime non-linéaire et le couplage des modes en présence de la non-linéarité. En inspectant les modes normaux du Laplacien de graphe, nous identifions ceux qui peuvent être étendus à des orbites périodiques non-linéaires. Il s’agit des modes normaux dont les vecteurs propres du Laplacien sont composés uniquement de {1}, {-1,+1} ou {-1,0,+1}. Nous effectuons systématiquement une analyse de stabilité linéaire (Floquet) de ces orbites et montrons le couplage des modes lorsque l’orbite est instable. Ensuite, nous caractérisons tous les graphes pour lesquels il existe des vecteurs propres du Laplacien ayant tous leurs composantes dans {-1,+1} ou {-1,0,+1}, en utilisant la théorie spectrale des graphes. Dans la deuxième partie, nous étudions des solutions périodiques localisées spatialement. En supposant une condition initiale de grande amplitude localisée sur un nœud du graphe, nous approchons l’évolution du système par l’équation de Duffing pour le nœud excité et un système linéaire forcé pour le reste du réseau. Cette approximation est validée en réduisant l’équation φ4 discrète à l’équation de Schrödinger non-linéaire de graphes et par l’analyse de Fourier de la solution numérique. Les résultats de cette thèse relient la dynamique non-linéaire à la théorie spectrale des graphes. === In this thesis, we study the discrete nonlinear wave equations in arbitrary finite networks. This is a general model, where the usual continuum Laplacian is replaced by the graph Laplacian. We consider such a wave equation with a cubic on-site nonlinearity which is the discrete φ4 model, describing a mechanical network of coupled nonlinear oscillators or an electrical network where the components are diodes or Josephson junctions. The linear graph wave equation is well understood in terms of normal modes, these are periodic solutions associated to the eigenvectors of the graph Laplacian. Our first goal is to investigate the continuation of normal modes in the nonlinear regime and the modes coupling in the presence of nonlinearity. By inspecting the normal modes of the graph Laplacian, we identify which ones can be extended into nonlinear periodic orbits. They are normal modes whose Laplacian eigenvectors are composed uniquely of {1}, {-1,+1} or {-1,0,+1}. We perform a systematic linear stability (Floquet) analysis of these orbits and show the modes coupling when the orbit is unstable. Then, we characterize all graphs for which there are eigenvectors of the graph Laplacian having all their components in {-1,+1} or {-1,0,+1}, using graph spectral theory. In the second part, we investigate periodic solutions that are spatially localized. Assuming a large amplitude localized initial condition on one node of the graph, we approximate its evolution by the Duffing equation. The rest of the network satisfies a linear system forced by the excited node. This approximation is validated by reducing the discrete φ4 equation to the graph nonlinear Schrödinger equation and by Fourier analysis. The results of this thesis relate nonlinear dynamics to graph spectral theory.
author2 Normandie
author_facet Normandie
Khames, Imene
author Khames, Imene
author_sort Khames, Imene
title Nonlinear network wave equations : periodic solutions and graph characterizations
title_short Nonlinear network wave equations : periodic solutions and graph characterizations
title_full Nonlinear network wave equations : periodic solutions and graph characterizations
title_fullStr Nonlinear network wave equations : periodic solutions and graph characterizations
title_full_unstemmed Nonlinear network wave equations : periodic solutions and graph characterizations
title_sort nonlinear network wave equations : periodic solutions and graph characterizations
publishDate 2018
url http://www.theses.fr/2018NORMIR04/document
work_keys_str_mv AT khamesimene nonlinearnetworkwaveequationsperiodicsolutionsandgraphcharacterizations
AT khamesimene equationsdondesnonlinerairesdereseauxsolutionsperiodiquesetcaracterisationsdegraphes
_version_ 1719300015161081856
spelling ndltd-theses.fr-2018NORMIR042019-11-30T05:26:15Z Nonlinear network wave equations : periodic solutions and graph characterizations Equations d'ondes non-linéraires de réseaux : solutions périodiques et caractérisations de graphes Equation d'onde de graphe Laplacien de graphe Modèle φ4 Modes normaux Localisation Dynamical systems Networks Graph Laplacian Nonlinear oscillations Normal modes Network wave equation Φ4 model Localization Dans cette thèse, nous étudions les équations d’ondes non-linéaires discrètes dans des réseaux finis arbitraires. C’est un modèle général, où le Laplacien continu est remplacé par le Laplacien de graphe. Nous considérons une telle équation d’onde avec une non-linéarité cubique sur les nœuds du graphe, qui est le modèle φ4 discret, décrivant un réseau mécanique d’oscillateurs non-linéaires couplés ou un réseau électrique où les composantes sont des diodes ou des jonctions Josephson. L’équation d’onde linéaire est bien comprise en termes de modes normaux, ce sont des solutions périodiques associées aux vecteurs propres du Laplacien de graphe. Notre premier objectif est d’étudier la continuation des modes normaux dans le régime non-linéaire et le couplage des modes en présence de la non-linéarité. En inspectant les modes normaux du Laplacien de graphe, nous identifions ceux qui peuvent être étendus à des orbites périodiques non-linéaires. Il s’agit des modes normaux dont les vecteurs propres du Laplacien sont composés uniquement de {1}, {-1,+1} ou {-1,0,+1}. Nous effectuons systématiquement une analyse de stabilité linéaire (Floquet) de ces orbites et montrons le couplage des modes lorsque l’orbite est instable. Ensuite, nous caractérisons tous les graphes pour lesquels il existe des vecteurs propres du Laplacien ayant tous leurs composantes dans {-1,+1} ou {-1,0,+1}, en utilisant la théorie spectrale des graphes. Dans la deuxième partie, nous étudions des solutions périodiques localisées spatialement. En supposant une condition initiale de grande amplitude localisée sur un nœud du graphe, nous approchons l’évolution du système par l’équation de Duffing pour le nœud excité et un système linéaire forcé pour le reste du réseau. Cette approximation est validée en réduisant l’équation φ4 discrète à l’équation de Schrödinger non-linéaire de graphes et par l’analyse de Fourier de la solution numérique. Les résultats de cette thèse relient la dynamique non-linéaire à la théorie spectrale des graphes. In this thesis, we study the discrete nonlinear wave equations in arbitrary finite networks. This is a general model, where the usual continuum Laplacian is replaced by the graph Laplacian. We consider such a wave equation with a cubic on-site nonlinearity which is the discrete φ4 model, describing a mechanical network of coupled nonlinear oscillators or an electrical network where the components are diodes or Josephson junctions. The linear graph wave equation is well understood in terms of normal modes, these are periodic solutions associated to the eigenvectors of the graph Laplacian. Our first goal is to investigate the continuation of normal modes in the nonlinear regime and the modes coupling in the presence of nonlinearity. By inspecting the normal modes of the graph Laplacian, we identify which ones can be extended into nonlinear periodic orbits. They are normal modes whose Laplacian eigenvectors are composed uniquely of {1}, {-1,+1} or {-1,0,+1}. We perform a systematic linear stability (Floquet) analysis of these orbits and show the modes coupling when the orbit is unstable. Then, we characterize all graphs for which there are eigenvectors of the graph Laplacian having all their components in {-1,+1} or {-1,0,+1}, using graph spectral theory. In the second part, we investigate periodic solutions that are spatially localized. Assuming a large amplitude localized initial condition on one node of the graph, we approximate its evolution by the Duffing equation. The rest of the network satisfies a linear system forced by the excited node. This approximation is validated by reducing the discrete φ4 equation to the graph nonlinear Schrödinger equation and by Fourier analysis. The results of this thesis relate nonlinear dynamics to graph spectral theory. Electronic Thesis or Dissertation Text en http://www.theses.fr/2018NORMIR04/document Khames, Imene 2018-09-27 Normandie Caputo, Jean-Guy