Études des masures et de leurs applications en arithmétique
Les masures ont été introduites en 2008 par Gaussent et Rousseau afin d’étudier les groupes de Kac-Moody sur les corps locaux. Elles généralisent les immeubles de Bruhat-Tits. Dans cette thèse, j’étudie d’une part les propriétés des masures et d’autre part leurs applications en arithmétique et en th...
Main Author: | |
---|---|
Other Authors: | |
Language: | fr |
Published: |
2018
|
Subjects: | |
Online Access: | http://www.theses.fr/2018LYSES027/document |
id |
ndltd-theses.fr-2018LYSES027 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
fr |
sources |
NDLTD |
topic |
Immeubles de Bruhat-Tits Masures Algèbre d’Iwahori-Hecke Formule de Gindikin-Karpelevich Groupes réductifs sur les corps locaux Masures Bruhat-Tits buildings Kac-Moody groups Arithmetics Representation theory Hecke algebra Iwahori-Hecke algebra |
spellingShingle |
Immeubles de Bruhat-Tits Masures Algèbre d’Iwahori-Hecke Formule de Gindikin-Karpelevich Groupes réductifs sur les corps locaux Masures Bruhat-Tits buildings Kac-Moody groups Arithmetics Representation theory Hecke algebra Iwahori-Hecke algebra Hebert, Auguste Études des masures et de leurs applications en arithmétique |
description |
Les masures ont été introduites en 2008 par Gaussent et Rousseau afin d’étudier les groupes de Kac-Moody sur les corps locaux. Elles généralisent les immeubles de Bruhat-Tits. Dans cette thèse, j’étudie d’une part les propriétés des masures et d’autre part leurs applications en arithmétique et en théorie des représentations. Rousseau a donné une définition axiomatique des masures, inspirée par la définition de Tits des immeubles de Bruhat-Tits. Je propose une axiomatique plus simple et plus agréable à manipuler et je montre que mon axiomatique est équivalente à celle de Rousseau.Nous étudions (en collaboration avec Ramla Abdellatif) les algèbres de Hecke sphériques et d’Iwahori-Hecke introduites par Bardy-Panse, Gaussent et Rousseau. Nous démontrons que contrairement au cas réductif, le centre de leur algèbre d’Iwahori-Hecke est quasiment trivial, et n’est en particulier pas isomorphe à l’algèbre de Hecke sphérique. Nous introduisons donc une algèbre d’Iwahori-Hecke complétée, dont le centre est isomorphe à l’algèbre de Hecke sphérique. Nous associons aussi des algèbres de Hecke à des faces sphériques comprises entre 0 et l’alcôve fondamentale de la masure,généralisant la construction de Bardy-Panse, Gaussent et Rousseau de l’algèbre d’Iwahori-Hecke.La formule de Gindikin-Karpelevich est une formule importante dans la théorie des groupes réductifs sur les corps locaux. Récemment, Braverman,Garland, Kazhdan, et Patnaik ont généralisé cette formule au cas des groupes de Kac-Moody affines. Une partie importante de leur preuve consiste à montrer que cette formule est bien définie, c’est à dire que les nombres intervenants dans cette formule, qui sont les cardinaux de certains sous groupes de quotients du groupe étudié sont bien finis. Je démontre cette finitude dans le cas des groupes de Kac-Moody généraux. J’étudie aussi les distances sur une masure. Je montre qu’on ne peux pas avoir de distance ayant les mêmes propriétés que dans le cas réductif. Je construis des distances ayant des propriétés moins forte mais qui semblent intéressantes. === Masures were introduced in 2008 by Gaussent and Rousseau in order to study Kac-Moody groups over local fields. They generalize Bruhat-Tits buildings. In this thesis, I study the properties of masures and the application of the theory of masures in arithmetic and representation theory. Rousseau gave an axiomatic of masures, inspired by the definition by Tits of Bruhat-Tits buildings. I propose an axiomatic, which is simpler and easyer to handle and I prove that my axiomatic is equivalent to the one of Rousseau. We study (in collaboration with Ramla Abdellatif) the spherical and Iwahori-Hecke algebras introduced by Bardy-Panse, Gaussent and Rousseau. We prove that on the contrary to the reductive case, the center of the Iwahori-Hecke algebra is almost trivial and is in particular not isomorphic to the spherical Hecke algebra. We thus introduce a completed Iwahori-Hecke algebra, whose center is isomorphic to the spherical Hecke algebra. We also associate Hecke algebras to spherical faces between 0 and the fundamental alcove of the masure, generalizing the construction of Bardy-Panse, Gaussent and Rousseau of the Iwahori-Hecke algebra.The Gindikin-Karpelevich formula is an important formula in the theory of reductive groups over local fields. Recently, Braverman, Garland, Kazhdanand Patnaik generalized this formula to the case of affine Kac-Moody groups. An important par of their prove consists in proving that this formula iswell-defined, which means that the numbers involved in this formula, which are the cardinals of certain subgroup of quotients of the studied subgroupare finite. I prove this finiteness in the case of general Kac-Moody groups.I also study distances on a masure. I prove that there is no distance having the same properties as in the reductive case. I construct distances having weaker properties, but which seem interesting. |
author2 |
Lyon |
author_facet |
Lyon Hebert, Auguste |
author |
Hebert, Auguste |
author_sort |
Hebert, Auguste |
title |
Études des masures et de leurs applications en arithmétique |
title_short |
Études des masures et de leurs applications en arithmétique |
title_full |
Études des masures et de leurs applications en arithmétique |
title_fullStr |
Études des masures et de leurs applications en arithmétique |
title_full_unstemmed |
Études des masures et de leurs applications en arithmétique |
title_sort |
études des masures et de leurs applications en arithmétique |
publishDate |
2018 |
url |
http://www.theses.fr/2018LYSES027/document |
work_keys_str_mv |
AT hebertauguste etudesdesmasuresetdeleursapplicationsenarithmetique AT hebertauguste studyofmasuresandoftheirapplicationsinarithmetic |
_version_ |
1719296272053043200 |
spelling |
ndltd-theses.fr-2018LYSES0272019-11-26T04:30:22Z Études des masures et de leurs applications en arithmétique Study of masures and of their applications in arithmetic Immeubles de Bruhat-Tits Masures Algèbre d’Iwahori-Hecke Formule de Gindikin-Karpelevich Groupes réductifs sur les corps locaux Masures Bruhat-Tits buildings Kac-Moody groups Arithmetics Representation theory Hecke algebra Iwahori-Hecke algebra Les masures ont été introduites en 2008 par Gaussent et Rousseau afin d’étudier les groupes de Kac-Moody sur les corps locaux. Elles généralisent les immeubles de Bruhat-Tits. Dans cette thèse, j’étudie d’une part les propriétés des masures et d’autre part leurs applications en arithmétique et en théorie des représentations. Rousseau a donné une définition axiomatique des masures, inspirée par la définition de Tits des immeubles de Bruhat-Tits. Je propose une axiomatique plus simple et plus agréable à manipuler et je montre que mon axiomatique est équivalente à celle de Rousseau.Nous étudions (en collaboration avec Ramla Abdellatif) les algèbres de Hecke sphériques et d’Iwahori-Hecke introduites par Bardy-Panse, Gaussent et Rousseau. Nous démontrons que contrairement au cas réductif, le centre de leur algèbre d’Iwahori-Hecke est quasiment trivial, et n’est en particulier pas isomorphe à l’algèbre de Hecke sphérique. Nous introduisons donc une algèbre d’Iwahori-Hecke complétée, dont le centre est isomorphe à l’algèbre de Hecke sphérique. Nous associons aussi des algèbres de Hecke à des faces sphériques comprises entre 0 et l’alcôve fondamentale de la masure,généralisant la construction de Bardy-Panse, Gaussent et Rousseau de l’algèbre d’Iwahori-Hecke.La formule de Gindikin-Karpelevich est une formule importante dans la théorie des groupes réductifs sur les corps locaux. Récemment, Braverman,Garland, Kazhdan, et Patnaik ont généralisé cette formule au cas des groupes de Kac-Moody affines. Une partie importante de leur preuve consiste à montrer que cette formule est bien définie, c’est à dire que les nombres intervenants dans cette formule, qui sont les cardinaux de certains sous groupes de quotients du groupe étudié sont bien finis. Je démontre cette finitude dans le cas des groupes de Kac-Moody généraux. J’étudie aussi les distances sur une masure. Je montre qu’on ne peux pas avoir de distance ayant les mêmes propriétés que dans le cas réductif. Je construis des distances ayant des propriétés moins forte mais qui semblent intéressantes. Masures were introduced in 2008 by Gaussent and Rousseau in order to study Kac-Moody groups over local fields. They generalize Bruhat-Tits buildings. In this thesis, I study the properties of masures and the application of the theory of masures in arithmetic and representation theory. Rousseau gave an axiomatic of masures, inspired by the definition by Tits of Bruhat-Tits buildings. I propose an axiomatic, which is simpler and easyer to handle and I prove that my axiomatic is equivalent to the one of Rousseau. We study (in collaboration with Ramla Abdellatif) the spherical and Iwahori-Hecke algebras introduced by Bardy-Panse, Gaussent and Rousseau. We prove that on the contrary to the reductive case, the center of the Iwahori-Hecke algebra is almost trivial and is in particular not isomorphic to the spherical Hecke algebra. We thus introduce a completed Iwahori-Hecke algebra, whose center is isomorphic to the spherical Hecke algebra. We also associate Hecke algebras to spherical faces between 0 and the fundamental alcove of the masure, generalizing the construction of Bardy-Panse, Gaussent and Rousseau of the Iwahori-Hecke algebra.The Gindikin-Karpelevich formula is an important formula in the theory of reductive groups over local fields. Recently, Braverman, Garland, Kazhdanand Patnaik generalized this formula to the case of affine Kac-Moody groups. An important par of their prove consists in proving that this formula iswell-defined, which means that the numbers involved in this formula, which are the cardinals of certain subgroup of quotients of the studied subgroupare finite. I prove this finiteness in the case of general Kac-Moody groups.I also study distances on a masure. I prove that there is no distance having the same properties as in the reductive case. I construct distances having weaker properties, but which seem interesting. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2018LYSES027/document Hebert, Auguste 2018-06-28 Lyon Gaussent, Stéphane |