Transport optimal semi-discret et applications en optique anidolique

Dans cette thèse, nous nous intéressons à la résolution de nombreux problèmes d’optique anidolique. Plus précisément, il s’agit de construire des composants optiques qui satisfont des contraintes d’illumination à savoir que l’on veut que la lumière réfléchie(ou réfractée) par ce composant correspond...

Full description

Bibliographic Details
Main Author: Meyron, Jocelyn
Other Authors: Grenoble Alpes
Language:en
Published: 2018
Subjects:
510
620
Online Access:http://www.theses.fr/2018GREAT104/document
id ndltd-theses.fr-2018GREAT104
record_format oai_dc
spelling ndltd-theses.fr-2018GREAT1042019-06-06T03:31:38Z Transport optimal semi-discret et applications en optique anidolique Semi-discrete optimal transport and applications in non-imaging optics Géométrie algorithmique Conception de surfaces Transport optimal Problème du réflecteur Computational geometry Surface design Optimal transport Reflector problem 510 620 Dans cette thèse, nous nous intéressons à la résolution de nombreux problèmes d’optique anidolique. Plus précisément, il s’agit de construire des composants optiques qui satisfont des contraintes d’illumination à savoir que l’on veut que la lumière réfléchie(ou réfractée) par ce composant corresponde à une distribution fixée en avance. Comme applications, nous pouvons citer la conception de phares de voitures ou de caustiques. Nous montrons que ces problèmes de conception de composants optiques peuvent être vus comme des problèmes de transport optimal et nous expliquons en quoi cette formulation permet d’étudier l’existence et la régularité des solutions. Nous montrons aussi comment, en utilisant des outils de géométrie algorithmique, nous pouvons utiliser une méthode numérique efficace, la méthode de Newton amortie, pour résoudre tous ces problèmes. Nous obtenons un algorithme générique capable de construire efficacement un composant optique qui réfléchit (ou réfracte)une distribution de lumière prescrite. Nous montrons aussi la convergence de l’algorithme de Newton pour résoudre le problème de transport optimal dans le cas où le support de la mesure source est une union finie de simplexes. Nous décrivons également la relation commune qui existe entre huit différents problèmes de conception de composants optiques et montrons qu’ils peuvent tous être vus comme des équations de Monge-Ampère discrètes. Nous appliquons aussi la méthode de Newton à de nombreux problèmes de conception de composants optiques sur différents exemples simulés ainsi que sur des prototypes physiques. Enfin, nous nous intéressons à un problème apparaissant en transport optimal numérique à savoir le choix du point initial. Nous développons trois méthodes simples pour trouver de “bons” points initiaux qui peuvent être ensuite utilisés comme point de départ dans des algorithmes de résolution de transport optimal. In this thesis, we are interested in solving many inverse problems arising inoptics. More precisely, we are interested in designing optical components such as mirrors andlenses that satisfy some light conservation constraints meaning that we want to control thereflected (or refracted) light in order match a prescribed intensity. This has applications incar headlight design or caustic design for example. We show that optical component designproblems can be recast as optimal transport ones for different cost functions and we explainhow this allows to study the existence and the regularity of the solutions of such problems. Wealso show how, using computational geometry, we can use an efficient numerical method namelythe damped Newton’s algorithm to solve all these problems. We will end up with a singlegeneric algorithm able to efficiently build an optical component with a prescribed reflected(or refracted) illumination. We show the convergence of the Newton’s algorithm to solve theoptimal transport problem when the source measure is supported on a finite union of simplices.We then describe the common relation between eight optical component design problemsand show that they can all be seen as discrete Monge-Ampère equations. We also apply theNewton’s method to optical component design and show numerous simulated and fabricatedexamples. Finally, we look at a problem arising in computational optimal transport namelythe choice of the initial weights. We develop three simple procedures to find “good” initialweights which can be used as a starting point in computational optimal transport algorithms. Electronic Thesis or Dissertation Text en http://www.theses.fr/2018GREAT104/document Meyron, Jocelyn 2018-10-16 Grenoble Alpes Attali, Dominique Thibert, Boris Mérigot, Quentin
collection NDLTD
language en
sources NDLTD
topic Géométrie algorithmique
Conception de surfaces
Transport optimal
Problème du réflecteur
Computational geometry
Surface design
Optimal transport
Reflector problem
510
620
spellingShingle Géométrie algorithmique
Conception de surfaces
Transport optimal
Problème du réflecteur
Computational geometry
Surface design
Optimal transport
Reflector problem
510
620
Meyron, Jocelyn
Transport optimal semi-discret et applications en optique anidolique
description Dans cette thèse, nous nous intéressons à la résolution de nombreux problèmes d’optique anidolique. Plus précisément, il s’agit de construire des composants optiques qui satisfont des contraintes d’illumination à savoir que l’on veut que la lumière réfléchie(ou réfractée) par ce composant corresponde à une distribution fixée en avance. Comme applications, nous pouvons citer la conception de phares de voitures ou de caustiques. Nous montrons que ces problèmes de conception de composants optiques peuvent être vus comme des problèmes de transport optimal et nous expliquons en quoi cette formulation permet d’étudier l’existence et la régularité des solutions. Nous montrons aussi comment, en utilisant des outils de géométrie algorithmique, nous pouvons utiliser une méthode numérique efficace, la méthode de Newton amortie, pour résoudre tous ces problèmes. Nous obtenons un algorithme générique capable de construire efficacement un composant optique qui réfléchit (ou réfracte)une distribution de lumière prescrite. Nous montrons aussi la convergence de l’algorithme de Newton pour résoudre le problème de transport optimal dans le cas où le support de la mesure source est une union finie de simplexes. Nous décrivons également la relation commune qui existe entre huit différents problèmes de conception de composants optiques et montrons qu’ils peuvent tous être vus comme des équations de Monge-Ampère discrètes. Nous appliquons aussi la méthode de Newton à de nombreux problèmes de conception de composants optiques sur différents exemples simulés ainsi que sur des prototypes physiques. Enfin, nous nous intéressons à un problème apparaissant en transport optimal numérique à savoir le choix du point initial. Nous développons trois méthodes simples pour trouver de “bons” points initiaux qui peuvent être ensuite utilisés comme point de départ dans des algorithmes de résolution de transport optimal. === In this thesis, we are interested in solving many inverse problems arising inoptics. More precisely, we are interested in designing optical components such as mirrors andlenses that satisfy some light conservation constraints meaning that we want to control thereflected (or refracted) light in order match a prescribed intensity. This has applications incar headlight design or caustic design for example. We show that optical component designproblems can be recast as optimal transport ones for different cost functions and we explainhow this allows to study the existence and the regularity of the solutions of such problems. Wealso show how, using computational geometry, we can use an efficient numerical method namelythe damped Newton’s algorithm to solve all these problems. We will end up with a singlegeneric algorithm able to efficiently build an optical component with a prescribed reflected(or refracted) illumination. We show the convergence of the Newton’s algorithm to solve theoptimal transport problem when the source measure is supported on a finite union of simplices.We then describe the common relation between eight optical component design problemsand show that they can all be seen as discrete Monge-Ampère equations. We also apply theNewton’s method to optical component design and show numerous simulated and fabricatedexamples. Finally, we look at a problem arising in computational optimal transport namelythe choice of the initial weights. We develop three simple procedures to find “good” initialweights which can be used as a starting point in computational optimal transport algorithms.
author2 Grenoble Alpes
author_facet Grenoble Alpes
Meyron, Jocelyn
author Meyron, Jocelyn
author_sort Meyron, Jocelyn
title Transport optimal semi-discret et applications en optique anidolique
title_short Transport optimal semi-discret et applications en optique anidolique
title_full Transport optimal semi-discret et applications en optique anidolique
title_fullStr Transport optimal semi-discret et applications en optique anidolique
title_full_unstemmed Transport optimal semi-discret et applications en optique anidolique
title_sort transport optimal semi-discret et applications en optique anidolique
publishDate 2018
url http://www.theses.fr/2018GREAT104/document
work_keys_str_mv AT meyronjocelyn transportoptimalsemidiscretetapplicationsenoptiqueanidolique
AT meyronjocelyn semidiscreteoptimaltransportandapplicationsinnonimagingoptics
_version_ 1719199765757952000