Etude 2D et 3D de la régénération osseuse à la surface et au sein de biomatériaux architecturés et ostéo-inductifs

A l’heure actuelle, les alliages à bases de titane sont les matériaux les plus utilisés en implantologie osseuse. Les procédés émergents de fabrication additive, tel que la fusion par faisceau d’électrons (EBM), permettent de fabriquer des structures architecturées sur-mesure en titane. Dans les cas...

Full description

Bibliographic Details
Main Author: Ho-Shui-Ling, Antalya
Other Authors: Grenoble Alpes
Language:en
Published: 2018
Subjects:
570
Online Access:http://www.theses.fr/2018GREAI087
Description
Summary:A l’heure actuelle, les alliages à bases de titane sont les matériaux les plus utilisés en implantologie osseuse. Les procédés émergents de fabrication additive, tel que la fusion par faisceau d’électrons (EBM), permettent de fabriquer des structures architecturées sur-mesure en titane. Dans les cas cliniques difficiles, il est nécessaire de stimuler activement les cellules souches osseuses pour qu’elles produisent de l’os. Les protéines osseuses morphogénétiques (BMP-2, BMP-7) ont cette capacité d’ostéo-induction et sont utilisées en clinique. Cependant, leur délivrance par matrice de collagène est très mal contrôlée. Des revêtements de surface à base de polymères naturels, tels que la poly(L-lysine) et l’acide hyaluronique (PLL/HA), peuvent former des films biomimétiques servant de nanoréservoir pour ces protéines. L’objectif de cette thèse était de développer un implant innovant constitué de structures 3D en titane à la fois architecturées et ostéo-inductrices. Pour cela, des structures 3D poreuses en alliage de titane (Ti-6Al-4V) constituées de cellules cubiques ont été construites par EBM. La porosité a été bien contrôlée avec une différence par rapport aux modèles CAO de moins de 1%. La BMP-7 a été chargée et quantifiée dans les films biomimétiques. La capacité d’ostéo-induction des films a été évaluée avec des cellules souches mésenchymateuses de souris par leur expression de la phosphatase alcaline. L’expression de cette enzyme a augmenté de façon dose-dépendante avec la dose de BMP-7 initialement chargée. Le dépôt du film ostéo-inducteur sur les structures 3D architecturées a été caractérisé par microscopies optique et électronique. Les cellules souches cultivées au sein des structures 3D bioactives se différencient en cellules osseuses démontrant ainsi leur capacité ostéo-inductrice sur le court terme in vitro. Des tests préliminaires in vivo sont actuellement réalisés pour tester ces structures 3D bioactives dans un modèle fémoral de défaut osseux chez le rat. === To date, titanium-based alloys (Ti) remain the most used implantable materials for load-bearing applications. Emerging additive manufacturing techniques such as electron beam melting (EBM) enable to custom-build architectured scaffolds of controlled macroporosity. In very difficult clinical situations, potent bioactive signals are needed to boost stem cells: osteoinductive molecules such as bone morphogenetic proteins (BMP-2) are currently used for this purpose. However, one of their limitations is their inappropriate delivery with collagen sponges. Biomimetic surface coatings made of the biopolymers poly(L-lysine) and hyaluronic acid, (PLL/HA) polyelectrolyte films, have recently been engineered as nanoreservoirs for BMP proteins. The aim of this PhD thesis was to develop architectured and osteoinductive 3D titanium-based scaffolds as innovative synthetic bone grafts. To this end, we used the EBM additive manufacturing technique to engineer porous scaffolds with cubit unit-cells. Their surface was coated with biomimetic films containing the bone morphogenetic protein 7 (BMP-7). The porosity was well controlled with a difference from CAD models of less than 1%. The osteoinductive capacity of BMP-7 loaded films was assessed using murine mesenchymal stem cells (MSCs) by quantifying their alkaline phosphatase (ALP) expression, which increased in a dose-dependent manner. The coating of the 3D architectured scaffolds by the bioactive film was characterized using optical and electron microscopy techniques. Finally, the 3D architectured scaffolds coated with BMP-7-loaded films were proved to be osteoinductive at the early stage in vitro. Preliminary experiments are currently done to assess their performance in an in vivo model of a critical size femoral bone defect in rat.