Cellules solaires à colorant tout solide composées d'une électrode de TiO2 à porosité hiérarchisée et d'un électrolyte polyliquides ioniques à matrice polysiloxane

DSSC est une technologie photovoltaïque de 3ème génération avec un fort potentiel économiquement et une efficacité importante de conversion des photons en électricité. Le DSSC à l'état solide à base d'électrolyte polymère solide prévient la perte et l'évaporation du solvant pendant la...

Full description

Bibliographic Details
Main Author: Bharwal, Anil
Other Authors: Grenoble Alpes
Language:en
Published: 2018
Subjects:
620
Online Access:http://www.theses.fr/2018GREAI007/document
id ndltd-theses.fr-2018GREAI007
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Colorant cellule solaire sensibilisée
Électrolyte polymère
TiO2 mésoporeux
Polyliquides ioniques
Polysiloxane
La stabilité
Solid State Dye sensitised Solar cell
Semi solid polymer electolyte
Mesoporous TiO2
Poly(ionic) liquid
Polysiloxane
Stability
620
spellingShingle Colorant cellule solaire sensibilisée
Électrolyte polymère
TiO2 mésoporeux
Polyliquides ioniques
Polysiloxane
La stabilité
Solid State Dye sensitised Solar cell
Semi solid polymer electolyte
Mesoporous TiO2
Poly(ionic) liquid
Polysiloxane
Stability
620
Bharwal, Anil
Cellules solaires à colorant tout solide composées d'une électrode de TiO2 à porosité hiérarchisée et d'un électrolyte polyliquides ioniques à matrice polysiloxane
description DSSC est une technologie photovoltaïque de 3ème génération avec un fort potentiel économiquement et une efficacité importante de conversion des photons en électricité. Le DSSC à l'état solide à base d'électrolyte polymère solide prévient la perte et l'évaporation du solvant pendant la fabrication et le fonctionnement des cellules, ce qui prolongera efficacement la durée de vie de la cellule. Cependant, il souffre d'une faible conductivité ionique et d'une faible infiltration des pores.La présente thèse est dédiée au développement concomitant d'électrolytes polymères à base de polysiloxane d'un côté et de photoanodes TiO2 à porosité controlée de l'autre côté et leur incorporation dans des cellules solaires contrastants à l'état solide (ss-DSSC), dans le but d'améliorer leur efficacité photovoltaïque et la stabilité à long terme. À notre connaissance, les DSSC comprenant des couches de TiO2 bimodales et des électrolytes de polysiloxane n'ont jamais été rapportés.La conductivité ionique et le coefficient de diffusion des tri-iodures des liquides poly (ioniques) (PILs) à base de polysiloxane ont été largement améliorés par addition de liquides ioniques (ILs) ou de carbonate d'éthylène (EC), conduisant à des conductivités ioniques de l'ordre de 10-4 -10-3 Scm-1. Les DSSC fabriqués avec les électrolytes optimisés ont montré des rendements jusqu'à 6%, avec une stabilité à long terme pendant 250 jours.Des films de TiO2 bimodaux à double porosité (méso et macroporosité) ont été fabriqués par revêtement par centrifugation, en utilisant des modèles mous et durs. Les films à double matrice bénéficient d'une taille de pores accrue tout en maintenant une surface spécifique élevée pour l'adsorption de colorant. Les films bimodaux se sont révélés plus efficaces lorsqu'ils ont été testés avec des électrolytes polymères, ayant des efficacités comparables avec l'électrolyte liquide dans les DSSC, malgré une absorption plus faible de colorant.Cette thèse apporte une contribution significative dans le domaine des DSSC en tant que cellules solaires efficaces et stables qui ont été préparés à partir d'électrolytes polymères et de films bimodaux nouvellement synthétisés. === DSSC is a 3rd generation photovoltaic technology with potential to economically harvest and efficiently convert photons to electricity. Full solid state-DSSC based on solid polymer electrolyte prevents the solvent leaking and evaporation during cell fabrication and operation, which will effectively prolong the cell life time. However, it suffers from low ionic conductivity and poor pore infiltration.The present thesis is dedicated to the concomitant development of polysiloxane-based polymer electrolytes on one side, and TiO2 photoanodes with tuned porosity on the other side, and their incorporation in solid state dye sensitised solar cell (ss-DSSCs), with the aim to improve their photovoltaic efficiency and the long term stability. To best of our knowledge, DSSCs comprising bimodal TiO2 layers and polysiloxane electrolytes have never been reported.The ionic conductivity and tri-iodide diffusion coefficient of the polysiloxane-based poly(ionic) liquids (PILs) were largely improved by adding of ionic liquids (ILs) or ethylene carbonate (EC), achieving ionic conductivities of 10−4 -10−3 Scm−1. The DSSCs fabricated with the optimized electrolytes showed efficiencies up to 6%, with long term stability for 250 days.Bimodal TiO2 films with dual porosity (meso- and macro-porosity) were fabricated by spin-coating, by using soft and hard templating. The dual templated films benefit from increased pore size while maintaining high surface area for dye adsorption. Bimodal films were shown to be more efficient when tested with polymer electrolytes, having comparable efficiencies with liquid electrolyte when in DSSCs, despite lower dye uptake.This thesis brings a significant contribution to the field of DSSCs as efficient and stable solar cells were prepared from newly synthesized polymer electrolytes and bimodal films.
author2 Grenoble Alpes
author_facet Grenoble Alpes
Bharwal, Anil
author Bharwal, Anil
author_sort Bharwal, Anil
title Cellules solaires à colorant tout solide composées d'une électrode de TiO2 à porosité hiérarchisée et d'un électrolyte polyliquides ioniques à matrice polysiloxane
title_short Cellules solaires à colorant tout solide composées d'une électrode de TiO2 à porosité hiérarchisée et d'un électrolyte polyliquides ioniques à matrice polysiloxane
title_full Cellules solaires à colorant tout solide composées d'une électrode de TiO2 à porosité hiérarchisée et d'un électrolyte polyliquides ioniques à matrice polysiloxane
title_fullStr Cellules solaires à colorant tout solide composées d'une électrode de TiO2 à porosité hiérarchisée et d'un électrolyte polyliquides ioniques à matrice polysiloxane
title_full_unstemmed Cellules solaires à colorant tout solide composées d'une électrode de TiO2 à porosité hiérarchisée et d'un électrolyte polyliquides ioniques à matrice polysiloxane
title_sort cellules solaires à colorant tout solide composées d'une électrode de tio2 à porosité hiérarchisée et d'un électrolyte polyliquides ioniques à matrice polysiloxane
publishDate 2018
url http://www.theses.fr/2018GREAI007/document
work_keys_str_mv AT bharwalanil cellulessolairesacoloranttoutsolidecomposeesduneelectrodedetio2aporositehierarchiseeetdunelectrolytepolyliquidesioniquesamatricepolysiloxane
AT bharwalanil hierarchicalporoustio2andionicliquidlikepolysiloxaneelectrolyteforsolidstatedyesensitizedsolarcells
_version_ 1718702417537662976
spelling ndltd-theses.fr-2018GREAI0072018-06-22T04:55:17Z Cellules solaires à colorant tout solide composées d'une électrode de TiO2 à porosité hiérarchisée et d'un électrolyte polyliquides ioniques à matrice polysiloxane Hierarchical porous TiO2 and ionic liquid-like polysiloxane electrolyte for solid state-Dye-Sensitized Solar Cells Colorant cellule solaire sensibilisée Électrolyte polymère TiO2 mésoporeux Polyliquides ioniques Polysiloxane La stabilité Solid State Dye sensitised Solar cell Semi solid polymer electolyte Mesoporous TiO2 Poly(ionic) liquid Polysiloxane Stability 620 DSSC est une technologie photovoltaïque de 3ème génération avec un fort potentiel économiquement et une efficacité importante de conversion des photons en électricité. Le DSSC à l'état solide à base d'électrolyte polymère solide prévient la perte et l'évaporation du solvant pendant la fabrication et le fonctionnement des cellules, ce qui prolongera efficacement la durée de vie de la cellule. Cependant, il souffre d'une faible conductivité ionique et d'une faible infiltration des pores.La présente thèse est dédiée au développement concomitant d'électrolytes polymères à base de polysiloxane d'un côté et de photoanodes TiO2 à porosité controlée de l'autre côté et leur incorporation dans des cellules solaires contrastants à l'état solide (ss-DSSC), dans le but d'améliorer leur efficacité photovoltaïque et la stabilité à long terme. À notre connaissance, les DSSC comprenant des couches de TiO2 bimodales et des électrolytes de polysiloxane n'ont jamais été rapportés.La conductivité ionique et le coefficient de diffusion des tri-iodures des liquides poly (ioniques) (PILs) à base de polysiloxane ont été largement améliorés par addition de liquides ioniques (ILs) ou de carbonate d'éthylène (EC), conduisant à des conductivités ioniques de l'ordre de 10-4 -10-3 Scm-1. Les DSSC fabriqués avec les électrolytes optimisés ont montré des rendements jusqu'à 6%, avec une stabilité à long terme pendant 250 jours.Des films de TiO2 bimodaux à double porosité (méso et macroporosité) ont été fabriqués par revêtement par centrifugation, en utilisant des modèles mous et durs. Les films à double matrice bénéficient d'une taille de pores accrue tout en maintenant une surface spécifique élevée pour l'adsorption de colorant. Les films bimodaux se sont révélés plus efficaces lorsqu'ils ont été testés avec des électrolytes polymères, ayant des efficacités comparables avec l'électrolyte liquide dans les DSSC, malgré une absorption plus faible de colorant.Cette thèse apporte une contribution significative dans le domaine des DSSC en tant que cellules solaires efficaces et stables qui ont été préparés à partir d'électrolytes polymères et de films bimodaux nouvellement synthétisés. DSSC is a 3rd generation photovoltaic technology with potential to economically harvest and efficiently convert photons to electricity. Full solid state-DSSC based on solid polymer electrolyte prevents the solvent leaking and evaporation during cell fabrication and operation, which will effectively prolong the cell life time. However, it suffers from low ionic conductivity and poor pore infiltration.The present thesis is dedicated to the concomitant development of polysiloxane-based polymer electrolytes on one side, and TiO2 photoanodes with tuned porosity on the other side, and their incorporation in solid state dye sensitised solar cell (ss-DSSCs), with the aim to improve their photovoltaic efficiency and the long term stability. To best of our knowledge, DSSCs comprising bimodal TiO2 layers and polysiloxane electrolytes have never been reported.The ionic conductivity and tri-iodide diffusion coefficient of the polysiloxane-based poly(ionic) liquids (PILs) were largely improved by adding of ionic liquids (ILs) or ethylene carbonate (EC), achieving ionic conductivities of 10−4 -10−3 Scm−1. The DSSCs fabricated with the optimized electrolytes showed efficiencies up to 6%, with long term stability for 250 days.Bimodal TiO2 films with dual porosity (meso- and macro-porosity) were fabricated by spin-coating, by using soft and hard templating. The dual templated films benefit from increased pore size while maintaining high surface area for dye adsorption. Bimodal films were shown to be more efficient when tested with polymer electrolytes, having comparable efficiencies with liquid electrolyte when in DSSCs, despite lower dye uptake.This thesis brings a significant contribution to the field of DSSCs as efficient and stable solar cells were prepared from newly synthesized polymer electrolytes and bimodal films. Electronic Thesis or Dissertation Text en http://www.theses.fr/2018GREAI007/document Bharwal, Anil 2018-01-11 Grenoble Alpes Université de Liège. Faculté des Sciences Alloin, Fannie Lojoiu, Cristina Henrist, Catherine