Récupération et valorisation d'énergie thermique sur gaz chauds- Approche expérimentale et numérique
L’objectif de la thèse porte sur l’analyse de la récupération de l’énergie thermique sur gaz chauds à température élevée(250°C - 450°C). Pour cela, la technologie de récupérateur à caloduc de type thermosiphon a été retenue. L’un des points cruciaux porte sur le choix d’un fluide de travail adapté à...
Main Author: | |
---|---|
Other Authors: | |
Language: | fr |
Published: |
2018
|
Subjects: | |
Online Access: | http://www.theses.fr/2018ESMA0016/document |
id |
ndltd-theses.fr-2018ESMA0016 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
fr |
sources |
NDLTD |
topic |
Thermosiphon Thermosyphon |
spellingShingle |
Thermosiphon Thermosyphon Hoang, Thanh Tung Récupération et valorisation d'énergie thermique sur gaz chauds- Approche expérimentale et numérique |
description |
L’objectif de la thèse porte sur l’analyse de la récupération de l’énergie thermique sur gaz chauds à température élevée(250°C - 450°C). Pour cela, la technologie de récupérateur à caloduc de type thermosiphon a été retenue. L’un des points cruciaux porte sur le choix d’un fluide de travail adapté à ces niveaux de température. Une analyse bibliographique a permis d’identifier le naphtalène comme élément de fluide potentiel pour cette gamme de température. Cependant le manque d’informations sur son comportement et ses capacités de transport a nécessité le développement d’un montage fondamental spécifique.Un caloduc thermosiphon chargé en naphtalène et de la forme d’un tube inox lisse de diamètre 23,9 mm, de longueur 1m (zone évaporateur : 20 cm ; zone condenseur : 20 cm) a été réalisé et testé. Les résultats expérimentaux obtenus démontrent tout d’abord la faisabilité d’un tel système dans cette gamme de température et pour les puissances thermiques envisagées. Ils révèlent un comportement inhabituel du thermosiphon lors des phases de démarrage (régime transitoire). En régime permanent, l’analyse a porté sur l’influence de la température de saturation, la puissance transférée ainsi que l’inclinaison. En termes de performances, les conductances thermiques (évaporateur, condenseur, système) augmentent avec la température vapeur et diminuent avec la puissance apportée à l’évaporateur. La puissance transférée peut s’échelonner de 0,2 kW à 1,5 kW, soit 1 à 8 W/cm² à l’évaporateur. Une faible sensibilité à l’inclinaison a été constatée lors des tests (0°-78°), un peu plus marqué pour 84°. Enfin pour une orientation à l’horizontale (90°), le caloduc fonctionne malgré tout et sa capacité de transfert reste élevée bien qu’éloignée du mode thermosiphon. En parallèle, un modèle de thermosiphon a été développé dans lequel les coefficients d’échanges locaux (évaporateur et condenseur) sont calculés par différentes corrélations issues de la littérature. La comparaison avec les résultats expérimentaux a permis de valider les modèles physiques retenus avec un bon accord, et de prédire le fonctionnement du caloduc pour d’autres sollicitations.Ainsi et enfin, un premier prototype récupérateur à thermosiphon au naphtalène a été conçu, fabriqué et couplé sur la veine « gaz chauds » conçue et développée aussi au sein du laboratoire. Les premiers résultats obtenus du système complet permettent de développer des stratégies de récupération et de valorisation de l’énergie thermique sur la ligne d’échappement, dans un contexte d’application automobile. === The aim of the thesis is to analyze the heat recovery on hot gases at intermediate temperature range (250°C - 450°C). For this purpose, the thermosyphon heat exchanger recuperation technology has been chosen. The choice of a working fluid adapted to these temperature levels is one of the crucial points. A literature review identified naphthalene as a potentialfluid for this temperature range. However, because of the lack of information about naphthalene heat pipes, the development of a fundamental test-rig was necessary to fully characterize the thermal behavior and transport capacities of this fluid.A thermosyphon heat-pipe charged with naphthalene in the shape of a smooth stainless steel tube with a diameter of 23.9mm, a length of 1 m (evaporator zone: 20 cm, condenser zone: 20 cm) has been manufactured and tested. The experimental results obtained demonstrate the feasibility of such system in this temperature range and for the thermal powers required.They reveal an unusual behavior of the thermosyphon during the start-up process. In steady state, the analysis deals with the influence of the saturation temperatures, the transferred heat power and the thermosyphon inclination. In terms of performances, the thermal conductance (evaporator, condenser, system) increases with the vapor temperature and decreases with the heat power supplied to the evaporator. The heat flow rate can be applied from 0.2 to 1.5 kW, or 1 to 8W/cm² at the evaporator. During the tests, the system is found to be less sensitive to inclination (0° to 78°), but more important for 84°. In the horizontal position, the thermosyphon operates, but its heat transfer remains high even far away from the thermosyphon mode. A theoretical model has been developed in which the local heat transfer coefficients(evaporator and condenser) are evaluated by different correlations from literature. The comparison with the experimental results allowed to validate the models retained with good agreement, and to make it possible to predict the heat pipe operation for other solicitations.Thus, and finally, a first thermosyphon charged naphthalene recuperator prototype was designed, manufactured and coupled to the "hot gas" line designed and performed in the laboratory. The first results obtained from the complete system allowed us to develop a strategy for heat recovery system on the exhaust line of an automotive application. |
author2 |
Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique |
author_facet |
Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique Hoang, Thanh Tung |
author |
Hoang, Thanh Tung |
author_sort |
Hoang, Thanh Tung |
title |
Récupération et valorisation d'énergie thermique sur gaz chauds- Approche expérimentale et numérique |
title_short |
Récupération et valorisation d'énergie thermique sur gaz chauds- Approche expérimentale et numérique |
title_full |
Récupération et valorisation d'énergie thermique sur gaz chauds- Approche expérimentale et numérique |
title_fullStr |
Récupération et valorisation d'énergie thermique sur gaz chauds- Approche expérimentale et numérique |
title_full_unstemmed |
Récupération et valorisation d'énergie thermique sur gaz chauds- Approche expérimentale et numérique |
title_sort |
récupération et valorisation d'énergie thermique sur gaz chauds- approche expérimentale et numérique |
publishDate |
2018 |
url |
http://www.theses.fr/2018ESMA0016/document |
work_keys_str_mv |
AT hoangthanhtung recuperationetvalorisationdenergiethermiquesurgazchaudsapprocheexperimentaleetnumerique AT hoangthanhtung contributiontowastethermalenergyrecoveryonhotgasesbyheatpipeheatexchangerexpeirmentalapproachandmodeling |
_version_ |
1718981227895062528 |
spelling |
ndltd-theses.fr-2018ESMA00162019-02-20T04:25:26Z Récupération et valorisation d'énergie thermique sur gaz chauds- Approche expérimentale et numérique Contribution to Waste Thermal Energy Recovery on Hot Gases by Heat Pipe Heat Exchanger - Expeirmental Approach and Modeling Thermosiphon Thermosyphon L’objectif de la thèse porte sur l’analyse de la récupération de l’énergie thermique sur gaz chauds à température élevée(250°C - 450°C). Pour cela, la technologie de récupérateur à caloduc de type thermosiphon a été retenue. L’un des points cruciaux porte sur le choix d’un fluide de travail adapté à ces niveaux de température. Une analyse bibliographique a permis d’identifier le naphtalène comme élément de fluide potentiel pour cette gamme de température. Cependant le manque d’informations sur son comportement et ses capacités de transport a nécessité le développement d’un montage fondamental spécifique.Un caloduc thermosiphon chargé en naphtalène et de la forme d’un tube inox lisse de diamètre 23,9 mm, de longueur 1m (zone évaporateur : 20 cm ; zone condenseur : 20 cm) a été réalisé et testé. Les résultats expérimentaux obtenus démontrent tout d’abord la faisabilité d’un tel système dans cette gamme de température et pour les puissances thermiques envisagées. Ils révèlent un comportement inhabituel du thermosiphon lors des phases de démarrage (régime transitoire). En régime permanent, l’analyse a porté sur l’influence de la température de saturation, la puissance transférée ainsi que l’inclinaison. En termes de performances, les conductances thermiques (évaporateur, condenseur, système) augmentent avec la température vapeur et diminuent avec la puissance apportée à l’évaporateur. La puissance transférée peut s’échelonner de 0,2 kW à 1,5 kW, soit 1 à 8 W/cm² à l’évaporateur. Une faible sensibilité à l’inclinaison a été constatée lors des tests (0°-78°), un peu plus marqué pour 84°. Enfin pour une orientation à l’horizontale (90°), le caloduc fonctionne malgré tout et sa capacité de transfert reste élevée bien qu’éloignée du mode thermosiphon. En parallèle, un modèle de thermosiphon a été développé dans lequel les coefficients d’échanges locaux (évaporateur et condenseur) sont calculés par différentes corrélations issues de la littérature. La comparaison avec les résultats expérimentaux a permis de valider les modèles physiques retenus avec un bon accord, et de prédire le fonctionnement du caloduc pour d’autres sollicitations.Ainsi et enfin, un premier prototype récupérateur à thermosiphon au naphtalène a été conçu, fabriqué et couplé sur la veine « gaz chauds » conçue et développée aussi au sein du laboratoire. Les premiers résultats obtenus du système complet permettent de développer des stratégies de récupération et de valorisation de l’énergie thermique sur la ligne d’échappement, dans un contexte d’application automobile. The aim of the thesis is to analyze the heat recovery on hot gases at intermediate temperature range (250°C - 450°C). For this purpose, the thermosyphon heat exchanger recuperation technology has been chosen. The choice of a working fluid adapted to these temperature levels is one of the crucial points. A literature review identified naphthalene as a potentialfluid for this temperature range. However, because of the lack of information about naphthalene heat pipes, the development of a fundamental test-rig was necessary to fully characterize the thermal behavior and transport capacities of this fluid.A thermosyphon heat-pipe charged with naphthalene in the shape of a smooth stainless steel tube with a diameter of 23.9mm, a length of 1 m (evaporator zone: 20 cm, condenser zone: 20 cm) has been manufactured and tested. The experimental results obtained demonstrate the feasibility of such system in this temperature range and for the thermal powers required.They reveal an unusual behavior of the thermosyphon during the start-up process. In steady state, the analysis deals with the influence of the saturation temperatures, the transferred heat power and the thermosyphon inclination. In terms of performances, the thermal conductance (evaporator, condenser, system) increases with the vapor temperature and decreases with the heat power supplied to the evaporator. The heat flow rate can be applied from 0.2 to 1.5 kW, or 1 to 8W/cm² at the evaporator. During the tests, the system is found to be less sensitive to inclination (0° to 78°), but more important for 84°. In the horizontal position, the thermosyphon operates, but its heat transfer remains high even far away from the thermosyphon mode. A theoretical model has been developed in which the local heat transfer coefficients(evaporator and condenser) are evaluated by different correlations from literature. The comparison with the experimental results allowed to validate the models retained with good agreement, and to make it possible to predict the heat pipe operation for other solicitations.Thus, and finally, a first thermosyphon charged naphthalene recuperator prototype was designed, manufactured and coupled to the "hot gas" line designed and performed in the laboratory. The first results obtained from the complete system allowed us to develop a strategy for heat recovery system on the exhaust line of an automotive application. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2018ESMA0016/document Hoang, Thanh Tung 2018-11-30 Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique Bertin, Yves Couton, Dominique |