Etude du comportement mécanique de tôles en alliage de titane et des paramètres procédé dans les opérations d'emboutissage à hautes températures

Dans l'industrie aéronautique, les alliages de titane sont utilisés pour leur excellent comportement mécanique associé à une faible masse volumique. Ils sont largement employés sous forme de tôles dont la mise en forme peut se faire par le biais de trois procédés : à température ambiante par op...

Full description

Bibliographic Details
Main Author: Sirvin, Quentin
Other Authors: Ecole nationale des Mines d'Albi-Carmaux
Language:fr
Published: 2018
Subjects:
Online Access:http://www.theses.fr/2018EMAC0003
Description
Summary:Dans l'industrie aéronautique, les alliages de titane sont utilisés pour leur excellent comportement mécanique associé à une faible masse volumique. Ils sont largement employés sous forme de tôles dont la mise en forme peut se faire par le biais de trois procédés : à température ambiante par opération d'emboutissage, à très hautes températures (T≈900°C) par formage superplastique (SPF) et à des températures intermédiaires (T=730°C, 880°C) par formage à chaud (HF). Le projet repose sur le développement du procédé d'emboutissage à chaud d'une tôle d'alliage de titane Ti-6Al-4V en conditions isothermes à des températures inférieures à 700°C. Par conséquent, la détermination des paramètres procédés et matériaux constitue une étape importante pour la mise en œuvre de simulations numériques et contribue à la réussite des opérations d'emboutissage de pièces industrielles. Ces paramètres procédés sont liés à la vitesse du poinçon, aux efforts de serre-flan et au frottement induit entre le flan et l'outillage. Leur analyse a permis de déterminer deux niveaux de températures (400°C et 500°C) offrant une chute drastique du coût énergétique, en comparaison des procédés HF ou SPF, tout en conservant des niveaux d'allongement suffisants. Les paramètres matériaux influençant le comportement de l'alliage sont analysés et quantifiés. Ils peuvent être influencés par plusieurs mécanismes : élasticité, viscosité, anisotropie (Hill48, Barlat91) et nature de l’écrouissage (isotrope, cinématique). Dans cette étude, un modèle de comportement élasto-viscoplastique anisotrope, capable de considérer les trajets de chargement subis par la tôle lors de sa mise en forme, a été formulé pour les deux niveaux de température. L’implantation du modèle de comportement a été réalisée dans le code de calcul éléments finis Abaqus/Standard 6.14® interfacé avec le logiciel ZMAT®. Elle a permis d’une part des simulations d’emboutissage de profil Omega pour lesquelles des comparaisons avec les expériences ont été réalisées et d’autre part, des calculs sur une pièce de forme complexe. === In the aerospace industry, titanium alloys are used for their excellent mechanical behavior associated with low density. They are widely available in sheet form and the final shape can be obtained through three processes: at room temperature by stamping operation, at very high temperatures (T≈900°C) by superplastic forming (SPF) and at intermediate temperature (T=730°C, 880°C) by hot forming (HF). The project is based on the development of the hot stamping process of Ti-6Al-4V titanium alloy sheet under isothermal conditions at temperatures below than 700°C. Therefore, the determination of the process and material parameters constitutes an important stage for implementing the numerical simulation while contributing to the success of the stamping operation at the scale of an industrial part. The process parameters are related to the punch speed, the blank holder forces and the friction induced between the sheet and the tool. Their analysis allowed to determine two temperature levels (400°C et 500°C) leading a drastic drop in energy cost, compared to HF or SPF processes, while maintaining enough elongation levels. The material parameters influencing the behavior of the alloy are analyzed and quantified. They can be influenced by several mechanisms: elasticity, viscosity, anisotropy (Hill48, Barlat91) and nature of hardening (isotropic, kinematic). In this study, an anisotropic elasto-viscoplastic behavior model, able to consider the loading path undergone by sheet during forming, has been formulated for both temperature levels. The implementation of the behavior model is achieved in Abaqus/Standard 6.14® Finite Element code with the material library plugin ZMAT®. It enables, on the one hand, stamping numerical simulations of a simple shape Omega profile for which experimental comparisons were done, on the other hand, calculations on an industrial part with a complex shape.