Système antennaire directif et reconfigurable pour réseaux de capteurs sans fil

Les études montrent généralement que la partie radio est l'une des plus grandes sources de consommation d'énergie dans un nœud de capteur. Cette source de consommation est directement liée au type d’antenne utilisé sur le module radio du nœud. Or, nombre de nœuds de capteurs sans fil sont...

Full description

Bibliographic Details
Main Author: Dihissou, Akimu Ayan Niyi
Other Authors: Côte d'Azur
Language:fr
Published: 2018
Subjects:
ISM
Online Access:http://www.theses.fr/2018AZUR4013/document
id ndltd-theses.fr-2018AZUR4013
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic Antenne directive
Antenne reconfigurable
Switch
Angle d’ouverture à -3dB
Coefficient de pondération
Diode PIN
Noeud de capteur
ISM
RSSI
Directive antennas
Reconfigurable antenna
Switch
Half power beam width
Excitation coefficient
PIN code
Sensor node
ISM
RSSI

spellingShingle Antenne directive
Antenne reconfigurable
Switch
Angle d’ouverture à -3dB
Coefficient de pondération
Diode PIN
Noeud de capteur
ISM
RSSI
Directive antennas
Reconfigurable antenna
Switch
Half power beam width
Excitation coefficient
PIN code
Sensor node
ISM
RSSI

Dihissou, Akimu Ayan Niyi
Système antennaire directif et reconfigurable pour réseaux de capteurs sans fil
description Les études montrent généralement que la partie radio est l'une des plus grandes sources de consommation d'énergie dans un nœud de capteur. Cette source de consommation est directement liée au type d’antenne utilisé sur le module radio du nœud. Or, nombre de nœuds de capteurs sans fil sont généralement équipés d'antennes omnidirectionnelles provoquant ainsi un gaspillage de l'énergie dû à leur rayonnement. Face à un tel constat, ce mémoire présente des systèmes d'antennes directives et reconfigurables dédiés à ces nœuds capteurs en lieu et place des antennes omnidirectionnelles pour pallier à cette perte d’énergie. Il s’agit de petites antennes qui doivent respecter pleinement la gamme de fréquences nécessaire pour fonctionner correctement, mais aussi, dont le rayonnement peut être modifié en utilisant des composants actifs peu gourmands en énergie avec un contrôle actif qui doit également être simple. La première solution proposée est une solution antennaire directive inspirée d'une antenne imprimée Yagi/Uda dans la bande ISM-2,4 GHz. Elle offre, en simulation, un gain élevé avec une valeur de 7,3dB et un angle d’ouverture à -3dB de 57 ° dans le plan azimutal. La deuxième solution proposée est une antenne à plusieurs faisceaux (six) possibles dans le plan azimutal. Celle-ci se compose de six monopôles identiques, ayant chacun un port d’alimentation. De par la sélection du port alimenté, un diagramme directif de gain simulé de 4,6 dB et d’angle d’ouverture à -3dB de 55° est obtenu, permettant ainsi une couverture globale du plan azimutal. De plus, une carte électronique dotée d’un switch de type SP6T dédiée à cette antenne a été conçue pour contrôler ces six diagrammes de rayonnement de manière automatique. Afin de réduire le nombre d'éléments rayonnants tout en améliorant les performances radio électriques obtenues, une troisième solution a été proposée. Elle se compose d'un monopôle alimenté et d'un monopôle parasite chargé par une inductance de 9,6 nH. La nature et la valeur de la charge ont été obtenues en utilisant les équations d'Uzkov qui permettent de calculer les coefficients de pondérations dans le cas de deux antennes monopôles alimentées séparément afin de maximiser le gain et la directivité dans une direction privilégiée. Contrairement à l’usage de la carte électronique pour le contrôle de diagramme de rayonnement dans le cas de la structure antennaire à six monopôles, l’aspect reconfigurable en diagramme est obtenu dans ce cas en utilisant des éléments réflecteurs et directeurs activés par des diodes PIN. Elle procure en simulation un gain maximal de 5,2 dB en azimut pour un angle d’ouverture à -3dB de 52°, dans les directions 90° et 270° selon les diodes sélectionnées. Enfin, une application directe de cette structure est proposée pour couvrir plus de deux directions en azimut. Elle consiste en un ensemble de quatre monopôles dans lequel deux d’entre eux sont alimentés et les deux autres sont chargés par des inductances identiques. Il est capable de diriger son rayonnement dans le plan azimutal couvrant des directions sur 360 ° (0 °, 90 °, 180 ° et 270 °). Le gain total réalisé simulé est de 4 dB pour chaque diagramme de rayonnement dans le plan azimutal avec un angle d’ouverture à 3dB d’environ 60°. Des campagnes de mesures ont été effectuées pour chacune des antennes présentées dans ce mémoire. L’indicateur de la puissance du signal reçu (RSSI) a été la grandeur métrique utilisée pour quantifier les performances des antennes proposées. Suite à ces campagnes, nous avons pu remarquer que l’utilisation d’antennes directives seules, améliorant la portée de communication entre deux nœuds de capteurs s’avère insuffisante dans le cas d’un déploiement aléatoire de nœuds capteurs. === Studies have shown that the communication subsystem is one of the greatest sources of energy consumption in wireless sensor networks. This subsystem is directly bounded to the type of antenna used on the radio module. Several sensor nodes are equipped with omnidirectional antennas leading to a waste of energy due to the shape of their beam. Instead of using omnidirectional antennas, directive and reconfigurable antennas system dedicated to wireless sensor networks are presented in this work so as to alleviate the waste of energy. On one hand, such dedicated antennae should be small in size and particularly designed by taking into consideration the frequency bandwidth of the node. On the other hand, their radiation pattern should also be reconfigurable by using powerless active components with a simple active control. To reach these objectives, we have in a first time proposed a directive solution inspired of a Printed-Yagi antenna in the ISM band (2.4-2.485) GHz. It provides high gain with a value of 7.3dB and a half power beam width BW−3dB of 57° in the azimuth plane. Secondly, we have proposed a multiple directional antenna in the ISM band. This antenna consists of six identical monopole antennas arranged in the same structure, having each one feeding port. Due to the selection of each feeding port, the proposed antenna covers the whole azimuthal plane with a simulated beam of 4.6 dB along with a half power beam width BW−3dB of 55°. Moreover, an electronic card equipped with an SP6T switch dedicated to that antenna has been developed to control the radiation pattern of the six identical antennas automatically. Willing to reduce the number of radiating elements while enhancing the radio performance, a third antenna has been proposed. It consists of a fed monopole and a loaded parasitic one having an inductance component of 9.6nH. The nature and the value of this inductance are obtained using the Uzkov equations that calculate the current weighting coefficients in the case of two separately fed antennas to maximize the gain and the directivity in the desired direction. Contrary to the use of electronic card in the control of radiation pattern prior to the conception of the third antenna, the reconfigurable aspect is obtained by using reflectors and director’s elements activated by PIN diodes. It offers a maximum gain of 5.2 dB in simulation at 2.4GHz along with a half power beam width BW−3dB of 52°, in both the 270° and +90° azimuthal directions depending on the selection of the set of PIN diodes. Finally, a straight application of this structure has been proposed in order to cover more than two directions in the azimuth plane. It is an array of four monopole antennas in which two of them are fed and the two others are loaded. Such antenna is capable to steer its radiation pattern in the azimuth plane covering 360° directions (0°, 90°, 180° and 270°). The achieved simulated realized total gain is 4 dB for each radiation pattern in the azimuth plane along with a half power beam width of about 60°. Measurement campaign test has been carried out for each proposed antenna in this work. During these measurements, the received signal strength indicator (RSSI) has been the paramount value to estimate the antenna performance in connection with the sensor node. Following this measurement campaign, we have been able to notice that the use of only directive antennas is not sufficient in a random deployment of sensor nodes. Hence, the reconfigurable aspect of the beam pattern by use of powerless active components should be taken into consideration. Such kind of antennas provide an improvement of the RSSI, which is a key factor in the reduction of collisions drastically on one hand, and on the other hand related to a reduction of power consumption
author2 Côte d'Azur
author_facet Côte d'Azur
Dihissou, Akimu Ayan Niyi
author Dihissou, Akimu Ayan Niyi
author_sort Dihissou, Akimu Ayan Niyi
title Système antennaire directif et reconfigurable pour réseaux de capteurs sans fil
title_short Système antennaire directif et reconfigurable pour réseaux de capteurs sans fil
title_full Système antennaire directif et reconfigurable pour réseaux de capteurs sans fil
title_fullStr Système antennaire directif et reconfigurable pour réseaux de capteurs sans fil
title_full_unstemmed Système antennaire directif et reconfigurable pour réseaux de capteurs sans fil
title_sort système antennaire directif et reconfigurable pour réseaux de capteurs sans fil
publishDate 2018
url http://www.theses.fr/2018AZUR4013/document
work_keys_str_mv AT dihissouakimuayanniyi systemeantennairedirectifetreconfigurablepourreseauxdecapteurssansfil
AT dihissouakimuayanniyi directiveandreconfigurableantennasystemforwirelesssensornetworks
_version_ 1719303841592115200
spelling ndltd-theses.fr-2018AZUR40132019-12-20T03:25:56Z Système antennaire directif et reconfigurable pour réseaux de capteurs sans fil Directive and reconfigurable antenna system for wireless sensor networks Antenne directive Antenne reconfigurable Switch Angle d’ouverture à -3dB Coefficient de pondération Diode PIN Noeud de capteur ISM RSSI Directive antennas Reconfigurable antenna Switch Half power beam width Excitation coefficient PIN code Sensor node ISM RSSI Les études montrent généralement que la partie radio est l'une des plus grandes sources de consommation d'énergie dans un nœud de capteur. Cette source de consommation est directement liée au type d’antenne utilisé sur le module radio du nœud. Or, nombre de nœuds de capteurs sans fil sont généralement équipés d'antennes omnidirectionnelles provoquant ainsi un gaspillage de l'énergie dû à leur rayonnement. Face à un tel constat, ce mémoire présente des systèmes d'antennes directives et reconfigurables dédiés à ces nœuds capteurs en lieu et place des antennes omnidirectionnelles pour pallier à cette perte d’énergie. Il s’agit de petites antennes qui doivent respecter pleinement la gamme de fréquences nécessaire pour fonctionner correctement, mais aussi, dont le rayonnement peut être modifié en utilisant des composants actifs peu gourmands en énergie avec un contrôle actif qui doit également être simple. La première solution proposée est une solution antennaire directive inspirée d'une antenne imprimée Yagi/Uda dans la bande ISM-2,4 GHz. Elle offre, en simulation, un gain élevé avec une valeur de 7,3dB et un angle d’ouverture à -3dB de 57 ° dans le plan azimutal. La deuxième solution proposée est une antenne à plusieurs faisceaux (six) possibles dans le plan azimutal. Celle-ci se compose de six monopôles identiques, ayant chacun un port d’alimentation. De par la sélection du port alimenté, un diagramme directif de gain simulé de 4,6 dB et d’angle d’ouverture à -3dB de 55° est obtenu, permettant ainsi une couverture globale du plan azimutal. De plus, une carte électronique dotée d’un switch de type SP6T dédiée à cette antenne a été conçue pour contrôler ces six diagrammes de rayonnement de manière automatique. Afin de réduire le nombre d'éléments rayonnants tout en améliorant les performances radio électriques obtenues, une troisième solution a été proposée. Elle se compose d'un monopôle alimenté et d'un monopôle parasite chargé par une inductance de 9,6 nH. La nature et la valeur de la charge ont été obtenues en utilisant les équations d'Uzkov qui permettent de calculer les coefficients de pondérations dans le cas de deux antennes monopôles alimentées séparément afin de maximiser le gain et la directivité dans une direction privilégiée. Contrairement à l’usage de la carte électronique pour le contrôle de diagramme de rayonnement dans le cas de la structure antennaire à six monopôles, l’aspect reconfigurable en diagramme est obtenu dans ce cas en utilisant des éléments réflecteurs et directeurs activés par des diodes PIN. Elle procure en simulation un gain maximal de 5,2 dB en azimut pour un angle d’ouverture à -3dB de 52°, dans les directions 90° et 270° selon les diodes sélectionnées. Enfin, une application directe de cette structure est proposée pour couvrir plus de deux directions en azimut. Elle consiste en un ensemble de quatre monopôles dans lequel deux d’entre eux sont alimentés et les deux autres sont chargés par des inductances identiques. Il est capable de diriger son rayonnement dans le plan azimutal couvrant des directions sur 360 ° (0 °, 90 °, 180 ° et 270 °). Le gain total réalisé simulé est de 4 dB pour chaque diagramme de rayonnement dans le plan azimutal avec un angle d’ouverture à 3dB d’environ 60°. Des campagnes de mesures ont été effectuées pour chacune des antennes présentées dans ce mémoire. L’indicateur de la puissance du signal reçu (RSSI) a été la grandeur métrique utilisée pour quantifier les performances des antennes proposées. Suite à ces campagnes, nous avons pu remarquer que l’utilisation d’antennes directives seules, améliorant la portée de communication entre deux nœuds de capteurs s’avère insuffisante dans le cas d’un déploiement aléatoire de nœuds capteurs. Studies have shown that the communication subsystem is one of the greatest sources of energy consumption in wireless sensor networks. This subsystem is directly bounded to the type of antenna used on the radio module. Several sensor nodes are equipped with omnidirectional antennas leading to a waste of energy due to the shape of their beam. Instead of using omnidirectional antennas, directive and reconfigurable antennas system dedicated to wireless sensor networks are presented in this work so as to alleviate the waste of energy. On one hand, such dedicated antennae should be small in size and particularly designed by taking into consideration the frequency bandwidth of the node. On the other hand, their radiation pattern should also be reconfigurable by using powerless active components with a simple active control. To reach these objectives, we have in a first time proposed a directive solution inspired of a Printed-Yagi antenna in the ISM band (2.4-2.485) GHz. It provides high gain with a value of 7.3dB and a half power beam width BW−3dB of 57° in the azimuth plane. Secondly, we have proposed a multiple directional antenna in the ISM band. This antenna consists of six identical monopole antennas arranged in the same structure, having each one feeding port. Due to the selection of each feeding port, the proposed antenna covers the whole azimuthal plane with a simulated beam of 4.6 dB along with a half power beam width BW−3dB of 55°. Moreover, an electronic card equipped with an SP6T switch dedicated to that antenna has been developed to control the radiation pattern of the six identical antennas automatically. Willing to reduce the number of radiating elements while enhancing the radio performance, a third antenna has been proposed. It consists of a fed monopole and a loaded parasitic one having an inductance component of 9.6nH. The nature and the value of this inductance are obtained using the Uzkov equations that calculate the current weighting coefficients in the case of two separately fed antennas to maximize the gain and the directivity in the desired direction. Contrary to the use of electronic card in the control of radiation pattern prior to the conception of the third antenna, the reconfigurable aspect is obtained by using reflectors and director’s elements activated by PIN diodes. It offers a maximum gain of 5.2 dB in simulation at 2.4GHz along with a half power beam width BW−3dB of 52°, in both the 270° and +90° azimuthal directions depending on the selection of the set of PIN diodes. Finally, a straight application of this structure has been proposed in order to cover more than two directions in the azimuth plane. It is an array of four monopole antennas in which two of them are fed and the two others are loaded. Such antenna is capable to steer its radiation pattern in the azimuth plane covering 360° directions (0°, 90°, 180° and 270°). The achieved simulated realized total gain is 4 dB for each radiation pattern in the azimuth plane along with a half power beam width of about 60°. Measurement campaign test has been carried out for each proposed antenna in this work. During these measurements, the received signal strength indicator (RSSI) has been the paramount value to estimate the antenna performance in connection with the sensor node. Following this measurement campaign, we have been able to notice that the use of only directive antennas is not sufficient in a random deployment of sensor nodes. Hence, the reconfigurable aspect of the beam pattern by use of powerless active components should be taken into consideration. Such kind of antennas provide an improvement of the RSSI, which is a key factor in the reduction of collisions drastically on one hand, and on the other hand related to a reduction of power consumption Electronic Thesis or Dissertation Text fr http://www.theses.fr/2018AZUR4013/document Dihissou, Akimu Ayan Niyi 2018-04-06 Côte d'Azur Staraj, Robert