Summary: | Les macrophages sont une cible cellulaire du VIH-1, et jouent un rôle important dans la pathogenèse virale. Au cours de ma thèse, je me suis intéressée au rôle des macrophages dans la pathogenèse du VIH-1, mais aussi au cours de la co-infection avec Mycobacterium tuberculosis (Mtb), l'agent étiologique de la tuberculose. J'ai tout d'abord participé à une étude mettant en évidence que l'infection par le VIH-1 reprogramme la migration des macrophages, favorisant notamment le mode migratoire protéolytique. Cet effet est médié par l'interaction de la protéine virale Nef avec les protéines de l'hôte Hck et WASP, ce qui conduit à une modification de l'organisation et de la fonction des podosomes, structures impliquées dans la dégradation de la matrice extracellulaire et la migration dépendante des protéases. La meilleure capacité à migrer des macrophages infectés par le VIH-1 in vitro se traduit in vivo par une augmentation du recrutement des macrophages dans différents tissus de souris transgéniques qui expriment la protéine Nef. Ces travaux ont ainsi révélé un nouveau mécanisme par lequel le VIH-1 dissémine dans les tissus, via l'action de Nef dans les macrophages. L'association fréquente du VIH-1 avec Mtb complique le problème de santé publique posé par l'infection virale. En effet, Mtb aggrave la pathogenèse du VIH-1 chez les patients co-infectés. L'étude des mécanismes impliqués et le rôle des macrophages dans ce phénomène constituent les objectifs principaux de ma thèse. J'ai révélé que les macrophages infectés par Mtb génèrent un microenvironnement qui active les macrophages voisins vers un programme de polarisation anti-inflammatoire dit M(IL-10). J'ai mis en évidence que ces macrophages M(IL-10) sont particulièrement efficaces pour la production de VIH-1. J'ai démontré que le microenvironnement associé à la tuberculose entraîne la formation de nanotubes entre les macrophages, grâce à l'activation de la signalisation cellulaire médiée par l'axe IL-10/STAT3. Ces nanotubes, qui favorisent le transfert du virus d'un macrophage à un autre, sont à l'origine de la spectaculaire production de VIH-1 par les macrophages. Nous avons également constaté que ces cellules M(IL-10) s'accumulent dans la circulation sanguine des patients co-infectés ainsi que dans les poumons de primates non-humains co-infectés. Dans l'ensemble, mes travaux identifient les nanotubes comme des acteurs clés dans l'aggravation de la pathogenèse du VIH-1 lors de la co-infection avec Mtb. Ainsi, les nanotubes et la voie de signalisation IL-10/STAT3 pourraient représenter des cibles pour développer de nouvelles thérapies de lutte contre la comorbidité VIH/Mtb. Les résultats obtenus lors de ma thèse contribuent à une meilleure compréhension du rôle des macrophages dans la pathogenèse et la dissémination du VIH-1 dans un contexte de mono-infection, ou lors d'une co-infection avec Mtb. === Macrophages are both crucial host effector cells for HIV-1 and important leukocytes involved in viral pathogenesis. For my doctoral thesis, I was interested in further characterizing the role of macrophages in HIV-1 pathogenesis, and during co-infection with Mycobacterium tuberculosis (Mtb), the etiological agent for tuberculosis (TB). I first participated in a study that provided evidence that HIV-1 infection reprograms the migration of macrophages, particularly by triggering the protease-dependent migration mode. This effect was mediated by the interaction of the viral protein Nef with the host proteins Hck and WASP, which leads to modification in the organization and proteolytic activity of podosomes, important structures for protease-dependent migration. The higher migration capacity of HIV-1-infected macrophages translated in vivo by an increase in the recruitment of macrophages in several tissues of Nef-transgenic mice. This work revealed a novel mechanistic understanding of how HIV-1 infection drives macrophages into tissues, contributing to viral dissemination and possibly creating a hidden cellular reservoir of virus. Worsening this public health issue posed by the HIV-1 epidemic is the frequent association of the virus with Mtb. Indeed, Mtb aggravates HIV-1 pathogenesis in co-infected individuals. Yet, the mechanisms involved in this process are still poorly understood, including the contribution of macrophages. To investigate how Mtb exacerbates the HIV-1 infection in human macrophages was the main focus of my thesis. First, I revealed that Mtb-infected macrophages generate a microenvironment that drives bystander macrophages towards phenotypic and functional features of the so-called M(IL-10) anti-inflammatory program. I found that these M(IL-10) macrophages are highly efficient for HIV-1 production. I demonstrated that the TB-associated microenvironment induces the formation of macrophage-to-macrophage connecting tunneling nanotubes (TNTs) through the IL- 10/STAT3 axis, a phenomenon that is responsible for the dramatic increase of HIV-1 production in M(IL-10) macrophages. Moreover, I provided evidence that M(IL-10) cells are expanded in the peripheral blood of co-infected patients and accumulate in the lungs of co-infected non-human primates. Altogether, this central part of my PhD thesis sheds light to TNTs as key players in the aggravation of HIV-1 pathogenesis in human macrophages during co-infection with Mtb. Thus, this cellular mechanism (together with the IL- 10/STAT3 axis) could represent an unexpected target to develop novel therapeutics against AIDS/TB co-morbidity. Collectively, the results obtained during my thesis contribute to a better understanding of the role of macrophages during HIV-1 pathogenesis and their ability to disseminate the virus in a mono-infection context, or during co-infection with Mtb.
|