Compensation des effets de la turbulence atmosphérique sur un lien optique montant sol-satellite géostationnaire : impact sur l'architecture du terminal sol

Un lien optique basé sur un multiplex de longueurs d'onde autour de 1,55μm est une alternative intéressante pour pallier la saturation des bandes radio-fréquences classiquement utilisées et pour répondre aux besoins de liens haut débit par satellite géostationnaire de la prochaine génération de...

Full description

Bibliographic Details
Main Author: Camboulives, Adrien-Richard
Other Authors: Université Paris-Saclay (ComUE)
Language:en
Published: 2017
Subjects:
Online Access:http://www.theses.fr/2017SACLS564/document
Description
Summary:Un lien optique basé sur un multiplex de longueurs d'onde autour de 1,55μm est une alternative intéressante pour pallier la saturation des bandes radio-fréquences classiquement utilisées et pour répondre aux besoins de liens haut débit par satellite géostationnaire de la prochaine génération de télécommunication. Compte-tenu de la puissance limitée des lasers envisagés, la divergence du faisceau doit être considérablement réduite. Par conséquent, le pointage du faisceau devient un paramètre critique. Au cours de sa propagation entre la station sol et un satellite géostationnaire, le faisceau optique est dévié et éventuellement déformé par la turbulence atmosphérique. Cela induit de fortes fluctuations du signal de télécommunication détecté, réduisant le débit disponible. Un miroir de basculement est utilisé pour pré-compenser la déviation mesurée à partir d'un faisceau provenant du satellite. Du fait de l'angle de pointage en avant entre la liaison descendante et la liaison montante, les effets de turbulence subis par les deux faisceaux sont légèrement différents, ce qui induit une erreur dans la correction.Le critère de performance de la liaison est l’intensité minimale détectable 95% du temps. Un modèle rapide, nommé WPLOT, prenant en compte les erreurs de pointage et leur évolution temporelle, est proposé pour évaluer cette intensité minimale en fonction des paramètres de la station sol et de la qualité de la correction. Les résultats obtenus avec ce modèle sont comparés avec ceux obtenus par un modèle physique mais plus couteux en temps de calcul ; le code TURANDOT. Grâce à ce modèle, une étude de sensibilité a été réalisée et a permis de proposer un dimensionnement de la station sol. Ce modèle permet également de générer des séries temporelles afin d’optimiser les codes de correction d’erreur et optimiser le débit (1Terabit/s d'ici 2025). === An optical link based on a multiplex of wavelengths at 1.55µm is foreseen to be a valuable alternative to the conventional radio-frequencies for the feeder link of the next-generation of high throughput geostationary satellite. Considering the limited power of lasers envisioned for feeder links, the beam divergence has to be dramatically reduced. Consequently, the beam pointing becomes a key issue. During its propagation between the ground station and a geostationary satellite, the optical beam is deflected and possibly distorted by atmospheric turbulence. It induces strong fluctuations of the detected telecom signal, thus reducing the capacity. A steering mirror using a measurement from a beam coming from the satellite is used to pre-compensate the deflection. Because of the point-ahead angle between the downlink and the uplink, the turbulence effects experienced by both beams are slightly different, inducing an error in the correction. The performance criteria is the minimum detectable irradiance 95% of the time. A fast model, named WPLOT, taking into account pointing errors and their temporal evolution, is proposed to evaluate the minimum irradiance as a function of the ground station parameters and quality of the correction. The model’s results are compared to those obtained with a more physical but requiring more computation power: TURANDOT. A sensitivity study has been realized and led to a sizing of a ground station. The model also enables the generation of time series in order to optimize the forward error correction codes in order to be compliant with the targeted capacity (1Terabit/s by 2025).