Fonction et régulation des histone-désacétylases en réponse au stress chez Arabidopsis
L'acétylation/désacétylation des histones joue un rôle important dans la régulation de divers processus du développement des plantes et de leur réponse au stress. Par contre, la régulation de l’activité des histone-desacétylases (HDAC) par des signaux cellulaires et la relation fonctionnelle en...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
2017
|
Subjects: | |
Online Access: | http://www.theses.fr/2017SACLS553/document |
id |
ndltd-theses.fr-2017SACLS553 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
HDACs Réponse au stress Acide salicylique Température élevée HDACs Stress response Salicylic acid Warm temperature |
spellingShingle |
HDACs Réponse au stress Acide salicylique Température élevée HDACs Stress response Salicylic acid Warm temperature Lei, Tingting Fonction et régulation des histone-désacétylases en réponse au stress chez Arabidopsis |
description |
L'acétylation/désacétylation des histones joue un rôle important dans la régulation de divers processus du développement des plantes et de leur réponse au stress. Par contre, la régulation de l’activité des histone-desacétylases (HDAC) par des signaux cellulaires et la relation fonctionnelle entre les différentes HDAC au cours de la réponse au stress oxydatif et d'une élévation de la température ambiante restent encore mal connus. Mon travail de thèse a comporté : 1) l’analyse de la modification post-traductionnelle de la protéine HDA19, régulée par redox et celle des conséquences sur la régulation de l’expression de gènes et la réponse à l’acide salicylique (SA) ; 2) l'étude fonctionelle de HDA9, HDA15 et HDA19 dans la réponse à une élévation de la température ambiante. Dans la première partie, nous montrons que le changement redox induit par SA régule l’accumulation nucléaire de la protéine HDA19 via une S-nitrosylation réversible. Le traitement à SA, ou au donneur physiologique d’oxyde nitrique, S-nitrosoglutathione, augmente les marques d'acétylation des histones d'HDA19 dans des plantules d’Arabidopsis. Des lignées mutantes d’hda19 présentent un état plus oxydé avec une augmentation de l’expression de gènes associés au ROS/RNS, ainsi qu'une accumulation de nicotinamide adénine dinucléotide et de glutathionne. Ces résultats suggèrent que SA induit la S-nitrosylation d’HDA19, réduit son accumulation nucléaire et par conséquent augmente l’acétylation des histones. Dans la seconde partie, nous montrons que HDA9, HDA19 et HDA15 sont toutes impliquées dans la réponse de la plante à l’élévation de la température ambiante. Des mutants hda15 montrent une réponse constitutive à des températures élevées dans des conditions normales, alors que les mutants hda19 et hda9 ont des phénotypes insensibles à la température élevée. L’analyse de l’expression de gènes par RT-PCR et RNA-seq révèle que la mutation d’HDA15 provoque une augmentation de transcrits des gènes impliqués dans le métabolisme primaire et cellulaire lorsque les plantules sont transférées de 20°C à 27°C pendant 4 heures. Par contre, la mutation d’HDA19 conduit à l’induction de gènes impliqués dans des réponses au stress, alors que les gènes induits par la mutation d’HDA9 après le transfert à 27°C ne semblent pas concerner des catégories fonctionnelle spécifiques. Il semble donc que la réponse des plantes à l’élévation de la température soit régulées par HDA9 et HDA19 par différentes voies. Ces résultats suggèrent que de différents membres d’HDAC ont des rôles distincts ou opposés dans la réponse à l’élévation de la température, en affectant l’expression de gènes de différentes catégories. Les travaux de ma thèse apportent un éclairage nouveau sur la fonction des HDAC, en enrichissant la compréhension de la régulation de l’expression génique chez la plante. === Histone acetylation/deacetylation play important roles in a diverse range of developmental processes and stress-responsive pathways in plants. However, little is known regarding the regulation of HDACs themselves by environmental signals, which may alter their function in the regulation of gene expression. Also HDACs functions in plant sensing of environmental conditions such as redox stresses and warm ambient temperature need to be precized. My thesis work focuses on: (1) The analysis of redoxregulated posttranslational modifications and theirconsequences on HDA19 function in gene regulation and in salicylic acid (SA)-mediated stress response; (2) The study of the function of HDA9, HDA15, and HDA19 in plant responses to warm temperature and thermal-related genes expression. In the first part, we show that SA-induced redox changes negatively regulate HDA19 nuclear accumulation through a reversible S-nitrosylation. Treatment with SA, as well as with the physiological nitric oxide donor Snitrosoglutathione, increases the abundance of several histone acetylation marks of HDA19 in Arabidopsis seedlings. hda19 mutant lines display a more oxidative status with increased ROS/RNS-related genes expression, as well as nicotinamide adenine dinucleotide and glutathione levels. These results suggest that SA affects histone acetylation by decreasing the nuclear accumulation of HDA19, resulting in histone hyperacetylation. The second part of the study showed that HDA9, HDA15, and HDA19 are involved in modulating plant adaptation to higher ambient temperatures in Arabidopsis. Mutation of HDA15 displayed a constitutive warm temperatureresponsive phenotype under normal temperature, whereas HDA9 and HDA19 mutants were shown insensitive to warming-temperature. Genes expression and RNA sequencing analysis revealed that HDA15 mutation led to the up-regulation of many genes involved in primary and cellular metabolic process when the seedlings were transferred from 20 °C to 27 °C for 4 h. On the other hand, hda19 mutation resulted in up-regulation of genes mainly involved in stressresponses at both normal (20 °C) and warmer (27 °C) temperatures. However, up-regulated genes in hda9-1 mutants did not appear enriched for any particular gene functional category when shifted from 20 °C to 27 °C. Likely, HDA9 and HDA19 positively regulate thermosensory elongation through distinct mechanisms. Our study suggested that the dynamics of histone acetylation regulated by HDA9, HDA15, and HDA19 plays an important role for plant adaptation to warm temperature, which involves distinct regulatory pathways of gene expression. Taken together, my thesis work brought in a few new elements to the current understanding of HDACs functions in the regulation of gene expression in plants. |
author2 |
Paris Saclay |
author_facet |
Paris Saclay Lei, Tingting |
author |
Lei, Tingting |
author_sort |
Lei, Tingting |
title |
Fonction et régulation des histone-désacétylases en réponse au stress chez Arabidopsis |
title_short |
Fonction et régulation des histone-désacétylases en réponse au stress chez Arabidopsis |
title_full |
Fonction et régulation des histone-désacétylases en réponse au stress chez Arabidopsis |
title_fullStr |
Fonction et régulation des histone-désacétylases en réponse au stress chez Arabidopsis |
title_full_unstemmed |
Fonction et régulation des histone-désacétylases en réponse au stress chez Arabidopsis |
title_sort |
fonction et régulation des histone-désacétylases en réponse au stress chez arabidopsis |
publishDate |
2017 |
url |
http://www.theses.fr/2017SACLS553/document |
work_keys_str_mv |
AT leitingting fonctionetregulationdeshistonedesacetylasesenreponseaustresschezarabidopsis AT leitingting functionandregulationofarabidopsishistonedeacetylasesinstressresponse |
_version_ |
1719310696107212800 |
spelling |
ndltd-theses.fr-2017SACLS5532020-01-31T03:35:12Z Fonction et régulation des histone-désacétylases en réponse au stress chez Arabidopsis Function and regulation of Arabidopsis histone deacetylases in stress response HDACs Réponse au stress Acide salicylique Température élevée HDACs Stress response Salicylic acid Warm temperature L'acétylation/désacétylation des histones joue un rôle important dans la régulation de divers processus du développement des plantes et de leur réponse au stress. Par contre, la régulation de l’activité des histone-desacétylases (HDAC) par des signaux cellulaires et la relation fonctionnelle entre les différentes HDAC au cours de la réponse au stress oxydatif et d'une élévation de la température ambiante restent encore mal connus. Mon travail de thèse a comporté : 1) l’analyse de la modification post-traductionnelle de la protéine HDA19, régulée par redox et celle des conséquences sur la régulation de l’expression de gènes et la réponse à l’acide salicylique (SA) ; 2) l'étude fonctionelle de HDA9, HDA15 et HDA19 dans la réponse à une élévation de la température ambiante. Dans la première partie, nous montrons que le changement redox induit par SA régule l’accumulation nucléaire de la protéine HDA19 via une S-nitrosylation réversible. Le traitement à SA, ou au donneur physiologique d’oxyde nitrique, S-nitrosoglutathione, augmente les marques d'acétylation des histones d'HDA19 dans des plantules d’Arabidopsis. Des lignées mutantes d’hda19 présentent un état plus oxydé avec une augmentation de l’expression de gènes associés au ROS/RNS, ainsi qu'une accumulation de nicotinamide adénine dinucléotide et de glutathionne. Ces résultats suggèrent que SA induit la S-nitrosylation d’HDA19, réduit son accumulation nucléaire et par conséquent augmente l’acétylation des histones. Dans la seconde partie, nous montrons que HDA9, HDA19 et HDA15 sont toutes impliquées dans la réponse de la plante à l’élévation de la température ambiante. Des mutants hda15 montrent une réponse constitutive à des températures élevées dans des conditions normales, alors que les mutants hda19 et hda9 ont des phénotypes insensibles à la température élevée. L’analyse de l’expression de gènes par RT-PCR et RNA-seq révèle que la mutation d’HDA15 provoque une augmentation de transcrits des gènes impliqués dans le métabolisme primaire et cellulaire lorsque les plantules sont transférées de 20°C à 27°C pendant 4 heures. Par contre, la mutation d’HDA19 conduit à l’induction de gènes impliqués dans des réponses au stress, alors que les gènes induits par la mutation d’HDA9 après le transfert à 27°C ne semblent pas concerner des catégories fonctionnelle spécifiques. Il semble donc que la réponse des plantes à l’élévation de la température soit régulées par HDA9 et HDA19 par différentes voies. Ces résultats suggèrent que de différents membres d’HDAC ont des rôles distincts ou opposés dans la réponse à l’élévation de la température, en affectant l’expression de gènes de différentes catégories. Les travaux de ma thèse apportent un éclairage nouveau sur la fonction des HDAC, en enrichissant la compréhension de la régulation de l’expression génique chez la plante. Histone acetylation/deacetylation play important roles in a diverse range of developmental processes and stress-responsive pathways in plants. However, little is known regarding the regulation of HDACs themselves by environmental signals, which may alter their function in the regulation of gene expression. Also HDACs functions in plant sensing of environmental conditions such as redox stresses and warm ambient temperature need to be precized. My thesis work focuses on: (1) The analysis of redoxregulated posttranslational modifications and theirconsequences on HDA19 function in gene regulation and in salicylic acid (SA)-mediated stress response; (2) The study of the function of HDA9, HDA15, and HDA19 in plant responses to warm temperature and thermal-related genes expression. In the first part, we show that SA-induced redox changes negatively regulate HDA19 nuclear accumulation through a reversible S-nitrosylation. Treatment with SA, as well as with the physiological nitric oxide donor Snitrosoglutathione, increases the abundance of several histone acetylation marks of HDA19 in Arabidopsis seedlings. hda19 mutant lines display a more oxidative status with increased ROS/RNS-related genes expression, as well as nicotinamide adenine dinucleotide and glutathione levels. These results suggest that SA affects histone acetylation by decreasing the nuclear accumulation of HDA19, resulting in histone hyperacetylation. The second part of the study showed that HDA9, HDA15, and HDA19 are involved in modulating plant adaptation to higher ambient temperatures in Arabidopsis. Mutation of HDA15 displayed a constitutive warm temperatureresponsive phenotype under normal temperature, whereas HDA9 and HDA19 mutants were shown insensitive to warming-temperature. Genes expression and RNA sequencing analysis revealed that HDA15 mutation led to the up-regulation of many genes involved in primary and cellular metabolic process when the seedlings were transferred from 20 °C to 27 °C for 4 h. On the other hand, hda19 mutation resulted in up-regulation of genes mainly involved in stressresponses at both normal (20 °C) and warmer (27 °C) temperatures. However, up-regulated genes in hda9-1 mutants did not appear enriched for any particular gene functional category when shifted from 20 °C to 27 °C. Likely, HDA9 and HDA19 positively regulate thermosensory elongation through distinct mechanisms. Our study suggested that the dynamics of histone acetylation regulated by HDA9, HDA15, and HDA19 plays an important role for plant adaptation to warm temperature, which involves distinct regulatory pathways of gene expression. Taken together, my thesis work brought in a few new elements to the current understanding of HDACs functions in the regulation of gene expression in plants. Electronic Thesis or Dissertation Text en http://www.theses.fr/2017SACLS553/document Lei, Tingting 2017-12-15 Paris Saclay Zhou, Dao Xiu |