Rôle des complexes PRC2 dans la régulation de la différenciation cellulaire chez Arabidopsis thaliana

Les protéines du groupe Polycomb (PcG) ont initialement été identifiées chez la Drosophile, en tant que facteurs nécessaires au maintien de l’expression spatio-temporelle de gènes homéotiques le long de l’axe antéro-postérieur. Depuis, leur rôle en tant que régulateurs du développement a été mis en...

Full description

Bibliographic Details
Main Author: González Morao, Ana Karina
Other Authors: Université Paris-Saclay (ComUE)
Language:en
Published: 2017
Subjects:
Online Access:http://www.theses.fr/2017SACLS153
Description
Summary:Les protéines du groupe Polycomb (PcG) ont initialement été identifiées chez la Drosophile, en tant que facteurs nécessaires au maintien de l’expression spatio-temporelle de gènes homéotiques le long de l’axe antéro-postérieur. Depuis, leur rôle en tant que régulateurs du développement a été mis en évidence chez la plupart des métazoaires ainsi que chez les plantes, chez lesquelles elles orchestrent les transitions développementales, l’organogenèse et la différenciation cellulaire. Les protéines PcG sont nécessaires au maintien de la répression transcriptionnelle de gènes cibles, par la régulation de leur structure chromatinienne via des modifications post-traductionnelles des histones. Elles forment des complexes multiprotéiques, notamment les Complexes Répressifs Polycomb PRC1 et PRC2. PRC2 est responsable de la tri-méthylation de la lysine 27 de l’histone H3 (H3K27me3) et est constitué de 4 sous-unités principales qui, pour la plupart, sont présentes sous forme de familles multigéniques dans le génome d’Arabidopsis thaliana. Ainsi, il existe plusieurs complexes PRC2 constitués de combinaisons alternatives de ces sous-unités, qui sont potentiellement présents au sein d’une même cellule et dont les rôles sont considérés comme partiellement redondants. En utilisant des approches moléculaires, génétiques et génomiques, nous avons analysé le rôle des sous-unités PRC2 exprimées dans la pointe racinaire d’Arabidopsis. Nous avons montré que l’interaction entre différents PRC2 est nécessaire pour réguler l’activité du méristème, le déroulement temporel de la différenciation cellulaire, ainsi que pour le maintien de l’identité des cellules matures. De plus, notre travail montre que les complexes PRC2 contenant l’une ou l’autre des deux méthyltransférases, CLF et SWN, régulent des groupes de gènes communs ainsi que distincts, à travers des mécanismes différents incluant une fonction non-canonique. Par ailleurs, nos résultats indiquent que les différences fonctionnelles entre CLF-PRC2 et SWN-PRC2 reposent, au moins en partie, sur les sous-unités non-catalytiques avec lesquelles la méthyltransférase interagit. Pour identifier les gènes régulés dynamiquement par PRC2 durant la différenciation cellulaire, nous avons développé des approches permettant d’accéder à la résolution des types cellulaires afin d’analyser les états chromatiniens à l’intérieur de la niche de cellules souches et de la zone de maturation de la racine. Nos données suggèrent que PRC2 participe au maintien de l’identité du Centre Quiescent (QC) en réprimant des voies de signalisations spécifiques. De plus, la différenciation cellulaire en direction de la zone de maturation est accompagnée par un accroissement du répertoire des cibles PRC2, incluant des régulateurs méristématiques ainsi que des gènes spécifiquement exprimés dans différents types cellulaires. Enfin, nos résultats suggèrent qu’une proportion significative des cibles PRC2 sont présentes sous la forme de domaines bivalents H3K27me3-H3K4me3 dans les cellules souches végétales, cette proportion étant moins importante que celle décrite chez les cellules souches embryonnaires de mammifères. Dans l’ensemble, ce travail apporte une vue intégrée de la fonction, la dynamique et la multiplicité de l’activité PRC2 au cours du processus de différenciation cellulaire, dans le contexte d’un organe en développement. Nos résultats mettent en évidence le rôle de PRC2 en tant que régulateur majeur de la différenciation cellulaire, qui apporte à la fois robustesse et plasticité aux programmes transcriptionnels qui sous-tendent l’acquisition spatio-temporelle et le maintien de l’identité cellulaire. === The Polycomb group (PcG) proteins were originally identified in Drosophila as factors required for maintaining the spatio-temporal expression of homeotic genes along the head-to-tail axis. Since then, their role as developmental regulators has been highlighted in most metazoans as well as plants, in which they orchestrate developmental transitions, organogenesis and cell differentiation. PcG proteins are required to maintain the transcriptional repression of target genes by regulating their chromatin structure via post-translational histone modifications. They are found in multiprotein complexes, including Polycomb Repressive Complexes PRC1 and PRC2. PRC2 is responsible for the trimethylation of histone H3 at lysine 27 (H3K27me3) and consists of four core subunits, most of which are represented by multigene families in Arabidopsis thaliana. Thus, distinct PRC2 complexes formed by alternative subunit combinations exist, possibly in the same cell, and are thought to play partly overlapping roles. By combining molecular, genetic and genomic approaches, we have analyzed the role of the PRC2 subunits expressed in the Arabidopsis root tip used as a model. We show that the interplay between distinct PRC2s is necessary to regulate the activity of the meristem and the timing of cell differentiation, as well as the maintenance of cell identity. In addition, our work reveals that PRC2 complexes containing either of the two related methyltransferases CLF or SWN regulate common as well as specific sets of genes through distinct mechanisms, including a non-canonical function. Furthermore, our results indicate that the functional differences between CLF-PRC2 and SWN-PRC2 rely, at least in part, on the non-catalytic subunit they are interacting with. To identify the genes dynamically regulated by PRC2 during cell differentiation, we have developed cell type-specific approaches to analyze chromatin marks in cell populations within the stem cell niche and the maturation zone of the root. Our data suggest that PRC2 participates in the maintenance of the quiescent center (QC) identity by repressing specific signaling pathways. In addition, cell differentiation towards the maturation zone is accompanied by an increase of the repertoire of PRC2 targets including stem cell and meristem regulators, as well as cell type-specific genes. Finally, our findings suggest that bivalent H3K27me3-H3K4me3 domains in the QC represent a significant, though smaller proportion of PRC2 targets in plant stem cells compared to what has been described in mammalian embryonic stem cells. Overall, this work provides an integrated view of the function, dynamics and multiplicity of PRC2 activity during the cell differentiation process, in the context of a developing organ. Our results highlight the role of PRC2s as major regulators of cell differentiation that provide both robustness and plasticity to the transcriptional programs underlying cell fate acquisition and identity maintenance.