Sur la modélisation physique et numérique du changement de phase interfacial lors d'impacts de vagues

Dans le cadre du stockage de Gaz Naturel Liquéfié (GNL) dans des réservoirs flottants, tels que les méthaniers, les contraintes imposées à la cuve par le ballotement de la cargaison doivent être quantifiées. La plupart des études expérimentales ou numériques actuelles ne prennent pas en compte la po...

Full description

Bibliographic Details
Main Author: Ancellin, Matthieu
Other Authors: Université Paris-Saclay (ComUE)
Language:fr
Published: 2017
Subjects:
Online Access:http://www.theses.fr/2017SACLN010/document
id ndltd-theses.fr-2017SACLN010
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic Changement de phase
Mécanique des fluides
Impact de vague
Simulation numérique
Equations aux dérivées partielles
Volumes finis
Phase change
Fluid mechanics
Wave impact
Numerical simulation
Partial differential equations
Finite volumes

spellingShingle Changement de phase
Mécanique des fluides
Impact de vague
Simulation numérique
Equations aux dérivées partielles
Volumes finis
Phase change
Fluid mechanics
Wave impact
Numerical simulation
Partial differential equations
Finite volumes

Ancellin, Matthieu
Sur la modélisation physique et numérique du changement de phase interfacial lors d'impacts de vagues
description Dans le cadre du stockage de Gaz Naturel Liquéfié (GNL) dans des réservoirs flottants, tels que les méthaniers, les contraintes imposées à la cuve par le ballotement de la cargaison doivent être quantifiées. La plupart des études expérimentales ou numériques actuelles ne prennent pas en compte la possibilité de changement de phase entre le GNL et sa vapeur lors d'un impact du liquide sur la paroi. L'objectif de cette thèse est l'ajout de ce phénomène physique dans un code de mécanique des fluides numérique pour la simulation de l'impact d'une vague déferlante sur une paroi.Dans ce but, un état de l'art des différentes modélisations possibles du changement de phase en mécanique des fluides est présenté. Il a été choisi de modéliser le changement de phase entre le liquide et le gaz à une interface franche sans hypothèse d'équilibre thermodynamique à l'interface. Un système hyperbolique de lois de conservation incluant le changement de phase interfacial hors-équilibre est présenté.Deux approches sont utilisées pour la résolution numérique de ce système. La première utilise un modèle de mélange pour décrire les mailles contenant l'interface liquide-vapeur. Dans la seconde méthode, l'interface est reconstruite et évolue de manière lagrangienne. Les deux approches sont basées sur un schéma volume fini de type Roe.L'enjeu de la simulation numérique du changement de phase interfacial est la capacité du code à gérer un rapport de densité loin de 1 et une chaleur latente élevée, qui entrainent respectivement de fortes variations de pression et de température à l'interface. L'aspect thermique est le phénomène limitant dans le cadre de la simulation d'impacts de vagues avec changement de phase. Seule une fine couche limite thermique autour de l'interface tend à revenir à l'équilibre thermodynamique liquide vapeur, ce qui limite l'effet quantitatif du changement de phase. === In the context of Liquefied Natural Gas (LNG) transportation in floating tanks, such as in LNG carriers, the constraints imposed by the sloshing of the liquid cargo on the tank have to be estimated. Most experimental and numerical studies until now do not take into account the possibility of phase change between the LNG and its vapor during the impact of liquid on the wall. The goal of this thesis is to include this physical phenomenon into a CFD code for the simulation of a breaking wave impact on a wall.A state of the art of the different modelisations of phase change in fluid mechanics is thus presented. This work focus on the modeling of phase change between the liquid and the gas at a sharp interface, without any equilibrium hypothesis. An hyperbolic system of balance laws including non-equilibrium interfacial phase change is presented.Two approaches are used to solve numerically this system. The first one relies on a mixture model for the description of the finite volume cells containing the interface, whereas in the second approach the interface is reconstructed and evolves in a lagrangian way. Both methods are based on a Roe-type finite volume scheme.The challenge of the numerical simulation of interfacial phase change is the capacity of the code to deal with density ratio far from 1 and high latent heat, as the lead to high temperature and pressure variations at the interface. The thermal aspect is the limiting phenomenon in the frame of wave impact simulation with phase change. Only a thin boundary layer around the interface tends to return to thermodynamical equilibrium, thus limiting the quantitative effect of phase change.
author2 Université Paris-Saclay (ComUE)
author_facet Université Paris-Saclay (ComUE)
Ancellin, Matthieu
author Ancellin, Matthieu
author_sort Ancellin, Matthieu
title Sur la modélisation physique et numérique du changement de phase interfacial lors d'impacts de vagues
title_short Sur la modélisation physique et numérique du changement de phase interfacial lors d'impacts de vagues
title_full Sur la modélisation physique et numérique du changement de phase interfacial lors d'impacts de vagues
title_fullStr Sur la modélisation physique et numérique du changement de phase interfacial lors d'impacts de vagues
title_full_unstemmed Sur la modélisation physique et numérique du changement de phase interfacial lors d'impacts de vagues
title_sort sur la modélisation physique et numérique du changement de phase interfacial lors d'impacts de vagues
publishDate 2017
url http://www.theses.fr/2017SACLN010/document
work_keys_str_mv AT ancellinmatthieu surlamodelisationphysiqueetnumeriqueduchangementdephaseinterfaciallorsdimpactsdevagues
AT ancellinmatthieu physicalandnumericalmodelingofinterfacialphasechangeduringwaveimpacts
_version_ 1719311304150220800
spelling ndltd-theses.fr-2017SACLN0102020-02-03T15:25:22Z Sur la modélisation physique et numérique du changement de phase interfacial lors d'impacts de vagues Physical and numerical modeling of interfacial phase change during wave impacts Changement de phase Mécanique des fluides Impact de vague Simulation numérique Equations aux dérivées partielles Volumes finis Phase change Fluid mechanics Wave impact Numerical simulation Partial differential equations Finite volumes Dans le cadre du stockage de Gaz Naturel Liquéfié (GNL) dans des réservoirs flottants, tels que les méthaniers, les contraintes imposées à la cuve par le ballotement de la cargaison doivent être quantifiées. La plupart des études expérimentales ou numériques actuelles ne prennent pas en compte la possibilité de changement de phase entre le GNL et sa vapeur lors d'un impact du liquide sur la paroi. L'objectif de cette thèse est l'ajout de ce phénomène physique dans un code de mécanique des fluides numérique pour la simulation de l'impact d'une vague déferlante sur une paroi.Dans ce but, un état de l'art des différentes modélisations possibles du changement de phase en mécanique des fluides est présenté. Il a été choisi de modéliser le changement de phase entre le liquide et le gaz à une interface franche sans hypothèse d'équilibre thermodynamique à l'interface. Un système hyperbolique de lois de conservation incluant le changement de phase interfacial hors-équilibre est présenté.Deux approches sont utilisées pour la résolution numérique de ce système. La première utilise un modèle de mélange pour décrire les mailles contenant l'interface liquide-vapeur. Dans la seconde méthode, l'interface est reconstruite et évolue de manière lagrangienne. Les deux approches sont basées sur un schéma volume fini de type Roe.L'enjeu de la simulation numérique du changement de phase interfacial est la capacité du code à gérer un rapport de densité loin de 1 et une chaleur latente élevée, qui entrainent respectivement de fortes variations de pression et de température à l'interface. L'aspect thermique est le phénomène limitant dans le cadre de la simulation d'impacts de vagues avec changement de phase. Seule une fine couche limite thermique autour de l'interface tend à revenir à l'équilibre thermodynamique liquide vapeur, ce qui limite l'effet quantitatif du changement de phase. In the context of Liquefied Natural Gas (LNG) transportation in floating tanks, such as in LNG carriers, the constraints imposed by the sloshing of the liquid cargo on the tank have to be estimated. Most experimental and numerical studies until now do not take into account the possibility of phase change between the LNG and its vapor during the impact of liquid on the wall. The goal of this thesis is to include this physical phenomenon into a CFD code for the simulation of a breaking wave impact on a wall.A state of the art of the different modelisations of phase change in fluid mechanics is thus presented. This work focus on the modeling of phase change between the liquid and the gas at a sharp interface, without any equilibrium hypothesis. An hyperbolic system of balance laws including non-equilibrium interfacial phase change is presented.Two approaches are used to solve numerically this system. The first one relies on a mixture model for the description of the finite volume cells containing the interface, whereas in the second approach the interface is reconstructed and evolves in a lagrangian way. Both methods are based on a Roe-type finite volume scheme.The challenge of the numerical simulation of interfacial phase change is the capacity of the code to deal with density ratio far from 1 and high latent heat, as the lead to high temperature and pressure variations at the interface. The thermal aspect is the limiting phenomenon in the frame of wave impact simulation with phase change. Only a thin boundary layer around the interface tends to return to thermodynamical equilibrium, thus limiting the quantitative effect of phase change. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2017SACLN010/document Ancellin, Matthieu 2017-03-30 Université Paris-Saclay (ComUE) Ghidaglia, Jean-Michel