Summary: | L’enjeu majeur de cette thèse réside dans l’amélioration de l’adéquation entre l’information retournée et les attentes des utilisateurs à l’aide de profils riches et efficaces. Il s’agit donc d’exploiter au maximum les retours utilisateur (qu’ils soient donnés sous la forme de clics, de notes ou encore d’avis écrits) et le contexte. En parallèle la forte croissance des appareils nomades (smartphones, tablettes) et par conséquent de l’informatique ubiquitaire nous oblige à repenser le rôle des systèmes d’accès à l’information. C’est pourquoi nous ne nous sommes pas seulement intéressés à la performance à proprement parler mais aussi à l’accompagnement de l’utilisateur dans son accès à l’information. Durant ces travaux de thèse, nous avons choisi d’exploiter les textes écrit par les utilisateurs pour affiner leurs profils et contextualiser la recommandation. À cette fin, nous avons utilisé les avis postés sur les sites spécialisés (IMDb, RateBeer, BeerAdvocate) et les boutiques en ligne (Amazon) ainsi que les messages postés sur Twitter.Dans un second temps, nous nous sommes intéressés aux problématiques de modélisation de la dynamique des utilisateurs. En plus d’aider à l’amélioration des performances du système, elle permet d’apporter une forme d’explication quant aux items proposés. Ainsi, nous proposons d’accompagner l’utilisateur dans son accès à l’information au lieu de le contraindre à un ensemble d’items que le système juge pertinents. === The main goal of this thesis resides in using rich and efficient profiling to improve the adequation between the retrieved information and the user's expectations. We focus on exploiting as much feedback as we can (being clicks, ratings or written reviews) as well as context. In the meantime, the tremendous growth of ubiquitous computing forces us to rethink the role of information access platforms. Therefore, we took interest not solely in performances but also in accompanying users through their access to the information. Through this thesis, we focus on users dynamics modeling. Not only it improves the system performances but it also brings some kind of explicativity to the recommendation. Thus, we propose to accompany the user through his experience accessing information instead of constraining him to a given set of items the systems finds fitting.
|