High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica

Le cycle global du carbone est fortement lié au bilan entre l’enfouissement en profondeur du carbone dans les zones de subduction, et les émissions de CO2 dans l'atmosphère par dégazage volcanique et métamorphique. Dans la zone d’avant arc (75-100 km en profondeur), les réactions de volatilisat...

Full description

Bibliographic Details
Main Author: Piccoli, Francesca
Other Authors: Paris 6
Language:en
Published: 2017
Subjects:
Online Access:http://www.theses.fr/2017PA066448/document
id ndltd-theses.fr-2017PA066448
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Cycle du carbone
Subduction
Métasomatisme
Carbon cycle
Subduction
Metasomatism
551.9
spellingShingle Cycle du carbone
Subduction
Métasomatisme
Carbon cycle
Subduction
Metasomatism
551.9
Piccoli, Francesca
High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica
description Le cycle global du carbone est fortement lié au bilan entre l’enfouissement en profondeur du carbone dans les zones de subduction, et les émissions de CO2 dans l'atmosphère par dégazage volcanique et métamorphique. Dans la zone d’avant arc (75-100 km en profondeur), les réactions de volatilisation et la dissolution des carbonates induite par l'infiltration des fluides aqueux sont les processus à l'origine de la production de fluides de composition C-O-H. Le carbone initialement piégé sous forme minéral dans les roches peut donc être mobilisé et transporté par ces fluides vers le manteau ou la croûte lithosphérique. Des estimations récentes prévoient que, compte tenu de l'ensemble des processus qui ont lieu dans les zones de subduction (volatilisation, dissolution, mais aussi bien le magmatisme et la formation de diapirs de metasediments), presque la totalité du carbone enfoui serait mobilisé et transféré en phase fluide dans la croûte ou dans le manteau.La percolation de fluides COH à travers des roches de la plaque plongeante et du manteau n'est pas seulement critique pour le recyclage du carbone, mais elle joue aussi en rôle sur le contrôle de l'état d’oxydoréduction du manteau, sur la mobilisation des éléments non volatils, ainsi que sur la rhéologie de ces roches. Cependant, les connaissances sur l'évolution de ces fluides à hautes pressions sont très limitées. Cette étude est centrée sur la caractérisation pétrologique, géochimique et isotopique des échantillons naturels de roches métasomatiques carbonatées de l'unité en facies lawsonite-eclogite de la Corse Alpine (France). Ces roches métasomatiques se localisent sur plusieurs kilomètres le long des contacts lithosphériques majeurs hérités de la plaque océanique subductée, et peuvent révéler des informations importantes sur l'évolution des fluides COH en condition de haute pression pendant la subduction. Dans ce travail, il sera démontré que l'interaction des fluides COH avec des roches silicatées à hautes pressions (entre 2-2.3 GPa et 490-530 ° C) peut causer la dissolution des silicates et la précipitation de carbonates, processus défini comme carbonatation à haute pression. Une caractérisation pétrologique et géochimique détaillée des échantillons, couplée à une étude systématique des isotopes de l'oxygène, du carbone et du strontium-néodyme sera utilisée pour déduire la composition et l'origine multi-source des fluides impliqués. Les implications géochimiques des interactions fluide-roche seront quantifiées par des calculs de bilan de masse et de flux de fluides intégrés dans le temps. Cette étude met en évidence l'importance de la remonté des fluides COH le long des gradients en pression et température pour le stockage du carbone dans les zones de subduction. === The balance between the carbon input in subduction zone, mainly by carbonate mineral-bearing rock subduction, and the output of CO2 to the atmosphere by volcanic and metamorphic degassing is critical to the carbon cycle. At fore arc-subarc conditions (75-100 km), carbon is thought to be released from the subducting rocks by devolatilization reactions and by fluid-induced dissolution of carbonate minerals. All together, devolatilization, dissolution, coupled with other processes like decarbonation melting and diapirism, are thought to be responsible for the complete transfer of the subducted carbon into the crust and lithospheric mantle during subduction metamorphism. Carbon-bearing fluids will form after devolatilization and dissolution reactions. The percolation of these fluids through the slab- and mantle-forming rocks is not only critical to carbon cycling, but also for non-volatile element mass transfer, slab and mantle RedOx conditions, as well as slab- and mantle-rock rheology. The evolution of such fluids through interactions with rocks at high-pressure conditions is, however, poorly constrained. This study focuses on the petrological, geochemical and isotopic characteristic of carbonated-metasomatic rocks from the lawsonite-eclogite unit in Alpine Corsica (France). The study rocks are found along major, inherited lithospheric lithological boundaries of the subducted oceanic-to-transitional plate and can inform on the evolution of carbon-bearing high-pressure fluids during subduction. In this work, it will be demonstrated that the interaction of carbon-bearing fluids with slab lithologies can lead to high-pressure carbonation (modeled conditions: 2 to 2.3 GPa and 490-530°C), characterized by silicate dissolution and Ca-carbonate mineral precipitation. A detailed petrological and geochemical characterization of selected samples, coupled with oxygen, carbon and strontium, neodymium isotopic systematic will be used to infer composition and multi-source origin of the fluids involved. Geochemical fluid-rock interactions will be quantified by mass balance and time-integrated fluid fluxes estimations. This study highlights the importance of carbonate-bearing fluids decompressing along down-T paths, such as along slab-parallel lithological boundaries, for the sequestration of carbon in subduction zones. Moreover, rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Lastly, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.
author2 Paris 6
author_facet Paris 6
Piccoli, Francesca
author Piccoli, Francesca
author_sort Piccoli, Francesca
title High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica
title_short High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica
title_full High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica
title_fullStr High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica
title_full_unstemmed High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica
title_sort high-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from alpine corsica
publishDate 2017
url http://www.theses.fr/2017PA066448/document
work_keys_str_mv AT piccolifrancesca highpressurecarbonationapetrologicalandgeochemicalstudyofcarbonatedmetasomaticrocksfromalpinecorsica
AT piccolifrancesca carbonatationenhautepressionuneetudepetrologiqueetgeochimiquedesrochesmetasomatiquescarbonateesdecorsealpine
_version_ 1719270611898859520
spelling ndltd-theses.fr-2017PA0664482019-10-19T04:33:54Z High-pressure carbonation : a petrological and geochemical study of carbonated metasomatic rocks from Alpine Corsica Carbonatation en haute-pression : une étude pétrologique et géochimique des roches métasomatiques carbonatées de Corse Alpine Cycle du carbone Subduction Métasomatisme Carbon cycle Subduction Metasomatism 551.9 Le cycle global du carbone est fortement lié au bilan entre l’enfouissement en profondeur du carbone dans les zones de subduction, et les émissions de CO2 dans l'atmosphère par dégazage volcanique et métamorphique. Dans la zone d’avant arc (75-100 km en profondeur), les réactions de volatilisation et la dissolution des carbonates induite par l'infiltration des fluides aqueux sont les processus à l'origine de la production de fluides de composition C-O-H. Le carbone initialement piégé sous forme minéral dans les roches peut donc être mobilisé et transporté par ces fluides vers le manteau ou la croûte lithosphérique. Des estimations récentes prévoient que, compte tenu de l'ensemble des processus qui ont lieu dans les zones de subduction (volatilisation, dissolution, mais aussi bien le magmatisme et la formation de diapirs de metasediments), presque la totalité du carbone enfoui serait mobilisé et transféré en phase fluide dans la croûte ou dans le manteau.La percolation de fluides COH à travers des roches de la plaque plongeante et du manteau n'est pas seulement critique pour le recyclage du carbone, mais elle joue aussi en rôle sur le contrôle de l'état d’oxydoréduction du manteau, sur la mobilisation des éléments non volatils, ainsi que sur la rhéologie de ces roches. Cependant, les connaissances sur l'évolution de ces fluides à hautes pressions sont très limitées. Cette étude est centrée sur la caractérisation pétrologique, géochimique et isotopique des échantillons naturels de roches métasomatiques carbonatées de l'unité en facies lawsonite-eclogite de la Corse Alpine (France). Ces roches métasomatiques se localisent sur plusieurs kilomètres le long des contacts lithosphériques majeurs hérités de la plaque océanique subductée, et peuvent révéler des informations importantes sur l'évolution des fluides COH en condition de haute pression pendant la subduction. Dans ce travail, il sera démontré que l'interaction des fluides COH avec des roches silicatées à hautes pressions (entre 2-2.3 GPa et 490-530 ° C) peut causer la dissolution des silicates et la précipitation de carbonates, processus défini comme carbonatation à haute pression. Une caractérisation pétrologique et géochimique détaillée des échantillons, couplée à une étude systématique des isotopes de l'oxygène, du carbone et du strontium-néodyme sera utilisée pour déduire la composition et l'origine multi-source des fluides impliqués. Les implications géochimiques des interactions fluide-roche seront quantifiées par des calculs de bilan de masse et de flux de fluides intégrés dans le temps. Cette étude met en évidence l'importance de la remonté des fluides COH le long des gradients en pression et température pour le stockage du carbone dans les zones de subduction. The balance between the carbon input in subduction zone, mainly by carbonate mineral-bearing rock subduction, and the output of CO2 to the atmosphere by volcanic and metamorphic degassing is critical to the carbon cycle. At fore arc-subarc conditions (75-100 km), carbon is thought to be released from the subducting rocks by devolatilization reactions and by fluid-induced dissolution of carbonate minerals. All together, devolatilization, dissolution, coupled with other processes like decarbonation melting and diapirism, are thought to be responsible for the complete transfer of the subducted carbon into the crust and lithospheric mantle during subduction metamorphism. Carbon-bearing fluids will form after devolatilization and dissolution reactions. The percolation of these fluids through the slab- and mantle-forming rocks is not only critical to carbon cycling, but also for non-volatile element mass transfer, slab and mantle RedOx conditions, as well as slab- and mantle-rock rheology. The evolution of such fluids through interactions with rocks at high-pressure conditions is, however, poorly constrained. This study focuses on the petrological, geochemical and isotopic characteristic of carbonated-metasomatic rocks from the lawsonite-eclogite unit in Alpine Corsica (France). The study rocks are found along major, inherited lithospheric lithological boundaries of the subducted oceanic-to-transitional plate and can inform on the evolution of carbon-bearing high-pressure fluids during subduction. In this work, it will be demonstrated that the interaction of carbon-bearing fluids with slab lithologies can lead to high-pressure carbonation (modeled conditions: 2 to 2.3 GPa and 490-530°C), characterized by silicate dissolution and Ca-carbonate mineral precipitation. A detailed petrological and geochemical characterization of selected samples, coupled with oxygen, carbon and strontium, neodymium isotopic systematic will be used to infer composition and multi-source origin of the fluids involved. Geochemical fluid-rock interactions will be quantified by mass balance and time-integrated fluid fluxes estimations. This study highlights the importance of carbonate-bearing fluids decompressing along down-T paths, such as along slab-parallel lithological boundaries, for the sequestration of carbon in subduction zones. Moreover, rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Lastly, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales. Electronic Thesis or Dissertation Text en http://www.theses.fr/2017PA066448/document Piccoli, Francesca 2017-10-16 Paris 6 Vitale Brovarone, Alberto