Théorèmes limites pour estimateurs Multilevel avec et sans poids. Comparaisons et applications

Dans ce travail, nous nous intéressons aux estimateurs Multilevel Monte Carlo. Ces estimateurs vont apparaître sous leur forme standard, avec des poids et dans une forme randomisée. Nous allons rappeler leurs définitions et les résultats existants concernant ces estimateurs en termes de minimisation...

Full description

Bibliographic Details
Main Author: Giorgi, Daphné
Other Authors: Paris 6
Language:en
fr
Published: 2017
Subjects:
Online Access:http://www.theses.fr/2017PA066063/document
Description
Summary:Dans ce travail, nous nous intéressons aux estimateurs Multilevel Monte Carlo. Ces estimateurs vont apparaître sous leur forme standard, avec des poids et dans une forme randomisée. Nous allons rappeler leurs définitions et les résultats existants concernant ces estimateurs en termes de minimisation du coût de simulation. Nous allons ensuite montrer une loi forte des grands nombres et un théorème central limite. Après cela nous allons étudier deux cadres d'applications. Le premier est celui des diffusions avec schémas de discrétisation antithétiques, où nous allons étendre les estimateurs Multilevel aux estimateurs Multilevel avec poids. Le deuxième est le cadre nested, où nous allons nous concentrer sur les hypothèses d'erreur forte et faible. Nous allons conclure par l'implémentation de la forme randomisée des estimateurs Multilevel, en la comparant aux estimateurs Multilevel avec et sans poids. === In this work, we will focus on the Multilevel Monte Carlo estimators. These estimators will appear in their standard form, with weights and in their randomized form. We will recall the previous existing results concerning these estimators, in terms of minimization of the simulation cost. We will then show a strong law of large numbers and a central limit theorem.After that, we will focus on two application frameworks.The first one is the diffusions framework with antithetic discretization schemes, where we will extend the Multilevel estimators to Multilevel estimators with weights, and the second is the nested framework, where we will analyze the weak and the strong error assumptions. We will conclude by implementing the randomized form of the Multilevel estimators, comparing this to the Multilevel estimators with and without weights.