Modélisations multiphysiques à deux échelles du procédé de fabrication additive par fusion laser de lit de poudre

Quel que soit le secteur d’activité, les procédés de fabrication additive pour les matériaux métalliques ont un fort potentiel industriel, spécifiquement pour la production de pièces à haute valeur ajoutée. Le secteur de l’outillage est l’un des utilisateurs de ces procédés, et plus particulièrement...

Full description

Bibliographic Details
Main Author: Durand, Pierre-Yves
Other Authors: Nantes
Language:fr
Published: 2017
Subjects:
Online Access:http://www.theses.fr/2017NANT4012
id ndltd-theses.fr-2017NANT4012
record_format oai_dc
spelling ndltd-theses.fr-2017NANT40122017-11-09T04:28:22Z Modélisations multiphysiques à deux échelles du procédé de fabrication additive par fusion laser de lit de poudre Multiphysics modeling at two scales of the selective laser melting additive manufacturing process Selective Laser Melting Quel que soit le secteur d’activité, les procédés de fabrication additive pour les matériaux métalliques ont un fort potentiel industriel, spécifiquement pour la production de pièces à haute valeur ajoutée. Le secteur de l’outillage est l’un des utilisateurs de ces procédés, et plus particulièrement du Selective Laser Melting (SLM). Ce procédé permet de diminuer les coûts et les temps de production des outillages, tout en augmentant la complexité des pièces fabriquées. Cependant, pour améliorer la qualité des pièces fabriquées, une meilleure compréhension des mécanismes physiques qui le régissent est nécessaire. Dans ce travail de thèse, consacré à la modélisation du procédé SLM, les approches suivies sont multiphysiques à deux échelles. La première échelle de modélisation, utilisant la méthode Volume Of Fluid, correspond à la fusion d’un lit de poudre par un laser puis sa solidification. Le lit de poudre numérique est produit à partir d’un générateur spécifique basé sur la granulométrie identifiée expérimentalement. Après certaines hypothèses simplificatrices posées sur les phénomènes physiques à modéliser, la tension superficielle a été implémentée et a nécessité l’utilisation de la méthode des « heights functions ». La seconde échelle de modélisation correspond à la construction d’une succession de cordons à l’aide de la méthode des éléments finis. Le modèle thermomécanique utilise la méthode « element birth » pour se rapprocher au plus près des conditions réelles du procédé. Après leur validation par des essais expérimentaux, les simulations ont permis de prédire le champ de température, la largeur de la zone fondue, ainsi que la formation du « keyhole ». Regardless the industry, additive manufacturing processes for metallic materials have a great industrial potential, especially to product high added value parts. One of the main users of these processes, and more specifically the Selective Laser Melting (SLM), is the tooling industry for plastics processing. It make possible to reduce production costs and manufacturing times while increasing the complexity of manufactured parts. However, in order to improve the quality of the latter and ensure their certifications, a better insight into the related physical phenomena undergone by the material during the process is still needed. In this PhD thesis, the SLM process modeling is multiphysic and concerns two different scales. The first modeling scale uses the Volume Of Fluid method to model the powder bed melting and its ensuing solidification. The numerical powder bed is computed thanks to a specific generator enabling to take account for the experimental granulometry. Once some simplifying assumptions on the physical phenomena stated, the surface tension has been implemented requiring the "heights functions" method use. The second modeling scale corresponds to the building of laser tracks series through the finite element method. The thermomechanical approach uses the element birth method in order to meet as far as possible the experimental conditions. Following its assessment through experiment/simulation face off, model have enable to predict the temperature field and the melted zone width as well as the keyhole formation. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2017NANT4012 Durand, Pierre-Yves 2017-04-25 Nantes Courant, Bruno
collection NDLTD
language fr
sources NDLTD
topic Selective Laser Melting

spellingShingle Selective Laser Melting

Durand, Pierre-Yves
Modélisations multiphysiques à deux échelles du procédé de fabrication additive par fusion laser de lit de poudre
description Quel que soit le secteur d’activité, les procédés de fabrication additive pour les matériaux métalliques ont un fort potentiel industriel, spécifiquement pour la production de pièces à haute valeur ajoutée. Le secteur de l’outillage est l’un des utilisateurs de ces procédés, et plus particulièrement du Selective Laser Melting (SLM). Ce procédé permet de diminuer les coûts et les temps de production des outillages, tout en augmentant la complexité des pièces fabriquées. Cependant, pour améliorer la qualité des pièces fabriquées, une meilleure compréhension des mécanismes physiques qui le régissent est nécessaire. Dans ce travail de thèse, consacré à la modélisation du procédé SLM, les approches suivies sont multiphysiques à deux échelles. La première échelle de modélisation, utilisant la méthode Volume Of Fluid, correspond à la fusion d’un lit de poudre par un laser puis sa solidification. Le lit de poudre numérique est produit à partir d’un générateur spécifique basé sur la granulométrie identifiée expérimentalement. Après certaines hypothèses simplificatrices posées sur les phénomènes physiques à modéliser, la tension superficielle a été implémentée et a nécessité l’utilisation de la méthode des « heights functions ». La seconde échelle de modélisation correspond à la construction d’une succession de cordons à l’aide de la méthode des éléments finis. Le modèle thermomécanique utilise la méthode « element birth » pour se rapprocher au plus près des conditions réelles du procédé. Après leur validation par des essais expérimentaux, les simulations ont permis de prédire le champ de température, la largeur de la zone fondue, ainsi que la formation du « keyhole ». === Regardless the industry, additive manufacturing processes for metallic materials have a great industrial potential, especially to product high added value parts. One of the main users of these processes, and more specifically the Selective Laser Melting (SLM), is the tooling industry for plastics processing. It make possible to reduce production costs and manufacturing times while increasing the complexity of manufactured parts. However, in order to improve the quality of the latter and ensure their certifications, a better insight into the related physical phenomena undergone by the material during the process is still needed. In this PhD thesis, the SLM process modeling is multiphysic and concerns two different scales. The first modeling scale uses the Volume Of Fluid method to model the powder bed melting and its ensuing solidification. The numerical powder bed is computed thanks to a specific generator enabling to take account for the experimental granulometry. Once some simplifying assumptions on the physical phenomena stated, the surface tension has been implemented requiring the "heights functions" method use. The second modeling scale corresponds to the building of laser tracks series through the finite element method. The thermomechanical approach uses the element birth method in order to meet as far as possible the experimental conditions. Following its assessment through experiment/simulation face off, model have enable to predict the temperature field and the melted zone width as well as the keyhole formation.
author2 Nantes
author_facet Nantes
Durand, Pierre-Yves
author Durand, Pierre-Yves
author_sort Durand, Pierre-Yves
title Modélisations multiphysiques à deux échelles du procédé de fabrication additive par fusion laser de lit de poudre
title_short Modélisations multiphysiques à deux échelles du procédé de fabrication additive par fusion laser de lit de poudre
title_full Modélisations multiphysiques à deux échelles du procédé de fabrication additive par fusion laser de lit de poudre
title_fullStr Modélisations multiphysiques à deux échelles du procédé de fabrication additive par fusion laser de lit de poudre
title_full_unstemmed Modélisations multiphysiques à deux échelles du procédé de fabrication additive par fusion laser de lit de poudre
title_sort modélisations multiphysiques à deux échelles du procédé de fabrication additive par fusion laser de lit de poudre
publishDate 2017
url http://www.theses.fr/2017NANT4012
work_keys_str_mv AT durandpierreyves modelisationsmultiphysiquesadeuxechellesduprocededefabricationadditiveparfusionlaserdelitdepoudre
AT durandpierreyves multiphysicsmodelingattwoscalesoftheselectivelasermeltingadditivemanufacturingprocess
_version_ 1718561007160262656