Design and characterization of transmitter circuits architectures using silicon ring resonator modulators for high bit rate communications

Depuis une dizaine d’années, avec la diversification des appareils connectés (PCs, Tablettes, TVs et Smartphones), l’écosystème Internet s’est drastiquement étendu. Aujourd’hui, 80 % du trafic IP mondial est concentré dans les centres de données. Pour répondre aux problématiques d’échelle des centre...

Full description

Bibliographic Details
Main Author: Dubray, Olivier
Other Authors: Lyon
Language:fr
en
Published: 2017
Subjects:
Online Access:http://www.theses.fr/2017LYSEC009/document
id ndltd-theses.fr-2017LYSEC009
record_format oai_dc
collection NDLTD
language fr
en
sources NDLTD
topic Transmission optique
400 Gbit/s
Photonique sur silicium
Modulation d’impulsions en amplitude
Multiplexage en longueur d’ondes
Modulateur en anneau résonant
Optical Transmission
400 Gbit/s
Silicon Photonics
Pulse Amplitude Modulation
Wavelength dense multiplexing
Ring eesonator modulator

spellingShingle Transmission optique
400 Gbit/s
Photonique sur silicium
Modulation d’impulsions en amplitude
Multiplexage en longueur d’ondes
Modulateur en anneau résonant
Optical Transmission
400 Gbit/s
Silicon Photonics
Pulse Amplitude Modulation
Wavelength dense multiplexing
Ring eesonator modulator

Dubray, Olivier
Design and characterization of transmitter circuits architectures using silicon ring resonator modulators for high bit rate communications
description Depuis une dizaine d’années, avec la diversification des appareils connectés (PCs, Tablettes, TVs et Smartphones), l’écosystème Internet s’est drastiquement étendu. Aujourd’hui, 80 % du trafic IP mondial est concentré dans les centres de données. Pour répondre aux problématiques d’échelle des centres de données en terme de densité de bande passante, de consommation énergétique et de coût des interconnections, le développement de nouveaux émetteurs optiques est critique. L’objectif de cette thèse est de proposer et évaluer différentes architectures d’émetteur en photonique sur silicium afin de répondre à la prochaine norme de débit de 400 Gbit/s sur des transmissions de 2 kilomètres. Le modulateur électro-optique sélectionné est le modulateur silicium en anneau résonant. Il possède des avantages non négligeables: faibles dimensions, faible consommation énergétique, et il permet un multiplexage dense en longueurs d’ondes. Durant cette thèse, l’optimisation de l’émetteur optique a été faite de manière progressive: de la jonction active à l’émetteur complet. Cette première étude a identifié les différents compromis à faire sur les paramètres du modulateur en anneau afin de définir ses performances. Un model compact du modulateur a été créé, permettant d’optimiser le composant avec un temps de simulation très réduit. Puis, tout en utilisant le modèle compact, deux architectures d’émetteur ont été étudiées basées sur une architecture classique de la littérature. Elles sont basées sur la mise en série de 8 modulateurs en anneau, chacun modulant une longueur d’onde différente. La différence entre les deux architectures vient du format de modulation utilisé: la première est modulée avec des signaux sur deux niveaux électriques avec des signaux sur 2 niveaux électriques au format d’impulsions en amplitude (PAM-2) à 50 Gbaud ; alors que la deuxième est modulée avec des signaux sur 4 niveaux électriques au format d’impulsions en amplitude (PAM-4). Les deux solutions répondent aux demandes de performances de la norme 400 Gbit/s avec les mêmes points de compromis de fonctionnement. Finalement, de nouvelles architectures d’émetteur optique ont été proposées permettant de réaliser la modulation PAM-4. Contrairement aux solutions précédemment étudiées, ces architectures utilisent en entrée deux flux de bits en parallèle qui sont optiquement combinés pour générer en sortie une modulation PAM-4. Une première solution est basée sur la mise en série de deux modulateurs en anneaux. Cette architecture a été validée avec des caractérisations de transmission optique à 30 Gbit/s avec seulement 1 Vpp de tension de commande. Une seconde solution a ensuite été proposée, elle est basée sur l’utilisation de deux modulateurs mis en parallèle dans un interféromètre Mach Zehnder. De la même manière, des caractérisations de transmission à 30 Gbit/s avec 1.2 Vpp de tension de commande ont permis de valider le fonctionnement de l’architecture. === Over the past decade, with the diversification of connected devices (PCs, Tablets, TVs and Smartphones), the Internet ecosystem has drastically extended. Today, 80 % world traffic is concentrated in the data centers where the data rate, the size and the cost is still growing. To address such scaling issues as bandwidth density, energy consumption and cost of the interconnects inside the data centers, the development of new optical transmitters is critical. The aim of this thesis is to propose and evaluate transmitter architectures using silicon photonics technology to address next 400 Gbit/s data rate standard over up to 2 kilometer links. The selected electro-optical modulator is the silicon ring resonator modulator which has substantial benefits: low footprint, low energy consumption and enables dense multiplexing. The optical transmitter architectures evaluations were successively optimized: from the active junction to the complete optical transmitter. This study identified the performances trade-offs impacted by the ring resonator modulator parameters. A compact model was generated to physically optimize the component in a reduced simulation time. Then, using the compact model, two transmitter architectures were studied based on classical architecture. Both are based on eight ring resonator modulators arranged in series modulating eight different wavelengths. The difference is the modulation format: the first one is electrically modulated at 50 Gbaud in 2-levels pulse amplitude modulation (PAM-2) and the second one at 25 Gbaud 4-levels pulse amplitude modulation (PAM-4). The two solutions fit the 400 Gbit/s performances demand with the use of the same trade-offs. Finally, new transmitter architectures were proposed to generate PAM-4 modulation. Unlike the previous architecture, they have in input two parallel bit streams which are optically combined to generate the PAM-4 modulation. The first solution is based on two silicon ring resonator modulator arranged in series. This architecture was validated through 30 Gbit/s transmission characterizations with only 1 Vpp. A second solution was then proposed, based on two silicon ring resonator modulators arranged in parallel in a Mach Zehnder interferometer. In the same way, transmission characterizations at 30 Gbit/s with 1.2 Vpp allows this architecture to be validated.
author2 Lyon
author_facet Lyon
Dubray, Olivier
author Dubray, Olivier
author_sort Dubray, Olivier
title Design and characterization of transmitter circuits architectures using silicon ring resonator modulators for high bit rate communications
title_short Design and characterization of transmitter circuits architectures using silicon ring resonator modulators for high bit rate communications
title_full Design and characterization of transmitter circuits architectures using silicon ring resonator modulators for high bit rate communications
title_fullStr Design and characterization of transmitter circuits architectures using silicon ring resonator modulators for high bit rate communications
title_full_unstemmed Design and characterization of transmitter circuits architectures using silicon ring resonator modulators for high bit rate communications
title_sort design and characterization of transmitter circuits architectures using silicon ring resonator modulators for high bit rate communications
publishDate 2017
url http://www.theses.fr/2017LYSEC009/document
work_keys_str_mv AT dubrayolivier designandcharacterizationoftransmittercircuitsarchitecturesusingsiliconringresonatormodulatorsforhighbitratecommunications
_version_ 1718617684697939968
spelling ndltd-theses.fr-2017LYSEC0092018-03-28T05:03:49Z Design and characterization of transmitter circuits architectures using silicon ring resonator modulators for high bit rate communications Transmission optique 400 Gbit/s Photonique sur silicium Modulation d’impulsions en amplitude Multiplexage en longueur d’ondes Modulateur en anneau résonant Optical Transmission 400 Gbit/s Silicon Photonics Pulse Amplitude Modulation Wavelength dense multiplexing Ring eesonator modulator Depuis une dizaine d’années, avec la diversification des appareils connectés (PCs, Tablettes, TVs et Smartphones), l’écosystème Internet s’est drastiquement étendu. Aujourd’hui, 80 % du trafic IP mondial est concentré dans les centres de données. Pour répondre aux problématiques d’échelle des centres de données en terme de densité de bande passante, de consommation énergétique et de coût des interconnections, le développement de nouveaux émetteurs optiques est critique. L’objectif de cette thèse est de proposer et évaluer différentes architectures d’émetteur en photonique sur silicium afin de répondre à la prochaine norme de débit de 400 Gbit/s sur des transmissions de 2 kilomètres. Le modulateur électro-optique sélectionné est le modulateur silicium en anneau résonant. Il possède des avantages non négligeables: faibles dimensions, faible consommation énergétique, et il permet un multiplexage dense en longueurs d’ondes. Durant cette thèse, l’optimisation de l’émetteur optique a été faite de manière progressive: de la jonction active à l’émetteur complet. Cette première étude a identifié les différents compromis à faire sur les paramètres du modulateur en anneau afin de définir ses performances. Un model compact du modulateur a été créé, permettant d’optimiser le composant avec un temps de simulation très réduit. Puis, tout en utilisant le modèle compact, deux architectures d’émetteur ont été étudiées basées sur une architecture classique de la littérature. Elles sont basées sur la mise en série de 8 modulateurs en anneau, chacun modulant une longueur d’onde différente. La différence entre les deux architectures vient du format de modulation utilisé: la première est modulée avec des signaux sur deux niveaux électriques avec des signaux sur 2 niveaux électriques au format d’impulsions en amplitude (PAM-2) à 50 Gbaud ; alors que la deuxième est modulée avec des signaux sur 4 niveaux électriques au format d’impulsions en amplitude (PAM-4). Les deux solutions répondent aux demandes de performances de la norme 400 Gbit/s avec les mêmes points de compromis de fonctionnement. Finalement, de nouvelles architectures d’émetteur optique ont été proposées permettant de réaliser la modulation PAM-4. Contrairement aux solutions précédemment étudiées, ces architectures utilisent en entrée deux flux de bits en parallèle qui sont optiquement combinés pour générer en sortie une modulation PAM-4. Une première solution est basée sur la mise en série de deux modulateurs en anneaux. Cette architecture a été validée avec des caractérisations de transmission optique à 30 Gbit/s avec seulement 1 Vpp de tension de commande. Une seconde solution a ensuite été proposée, elle est basée sur l’utilisation de deux modulateurs mis en parallèle dans un interféromètre Mach Zehnder. De la même manière, des caractérisations de transmission à 30 Gbit/s avec 1.2 Vpp de tension de commande ont permis de valider le fonctionnement de l’architecture. Over the past decade, with the diversification of connected devices (PCs, Tablets, TVs and Smartphones), the Internet ecosystem has drastically extended. Today, 80 % world traffic is concentrated in the data centers where the data rate, the size and the cost is still growing. To address such scaling issues as bandwidth density, energy consumption and cost of the interconnects inside the data centers, the development of new optical transmitters is critical. The aim of this thesis is to propose and evaluate transmitter architectures using silicon photonics technology to address next 400 Gbit/s data rate standard over up to 2 kilometer links. The selected electro-optical modulator is the silicon ring resonator modulator which has substantial benefits: low footprint, low energy consumption and enables dense multiplexing. The optical transmitter architectures evaluations were successively optimized: from the active junction to the complete optical transmitter. This study identified the performances trade-offs impacted by the ring resonator modulator parameters. A compact model was generated to physically optimize the component in a reduced simulation time. Then, using the compact model, two transmitter architectures were studied based on classical architecture. Both are based on eight ring resonator modulators arranged in series modulating eight different wavelengths. The difference is the modulation format: the first one is electrically modulated at 50 Gbaud in 2-levels pulse amplitude modulation (PAM-2) and the second one at 25 Gbaud 4-levels pulse amplitude modulation (PAM-4). The two solutions fit the 400 Gbit/s performances demand with the use of the same trade-offs. Finally, new transmitter architectures were proposed to generate PAM-4 modulation. Unlike the previous architecture, they have in input two parallel bit streams which are optically combined to generate the PAM-4 modulation. The first solution is based on two silicon ring resonator modulator arranged in series. This architecture was validated through 30 Gbit/s transmission characterizations with only 1 Vpp. A second solution was then proposed, based on two silicon ring resonator modulators arranged in parallel in a Mach Zehnder interferometer. In the same way, transmission characterizations at 30 Gbit/s with 1.2 Vpp allows this architecture to be validated. Electronic Thesis or Dissertation Text fr en http://www.theses.fr/2017LYSEC009/document Dubray, Olivier 2017-02-02 Lyon O'Connor, Ian Ménézo, Sylvie