Optimization and Scheduling on Heterogeneous CPU/FPGA Architecture with Communication Delays
Le domaine de l'embarqué connaît depuis quelques années un essor important avec le développement d'applications de plus en plus exigeantes en calcul auxquels les architectures traditionnelles à base de processeurs (mono/multi cœur) ne peuvent pas toujours répondre en termes de performances...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
2017
|
Subjects: | |
Online Access: | http://www.theses.fr/2017LORR0301 |
id |
ndltd-theses.fr-2017LORR0301 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Algorithme génétique Problèmes d'ordonnancement Optimisation combinatoire Métaheuristiques Makespan (longueur d'ordonnancement) Programmation linéaire Système hétérogène MPSoC Parallélisme Systèmes embarqués reconfigurables Genetic algorithm Task scheduling problem Combinatorial optimization Metaheuristics Makespan (schedule length) Linear programming Heterogeneous system MPSoC Parallelism Embedded reconfigurable systems 006.22 |
spellingShingle |
Algorithme génétique Problèmes d'ordonnancement Optimisation combinatoire Métaheuristiques Makespan (longueur d'ordonnancement) Programmation linéaire Système hétérogène MPSoC Parallélisme Systèmes embarqués reconfigurables Genetic algorithm Task scheduling problem Combinatorial optimization Metaheuristics Makespan (schedule length) Linear programming Heterogeneous system MPSoC Parallelism Embedded reconfigurable systems 006.22 Abdallah, Fadel Optimization and Scheduling on Heterogeneous CPU/FPGA Architecture with Communication Delays |
description |
Le domaine de l'embarqué connaît depuis quelques années un essor important avec le développement d'applications de plus en plus exigeantes en calcul auxquels les architectures traditionnelles à base de processeurs (mono/multi cœur) ne peuvent pas toujours répondre en termes de performances. Si les architectures multiprocesseurs ou multi cœurs sont aujourd'hui généralisées, il est souvent nécessaire de leur adjoindre des circuits de traitement dédiés, reposant notamment sur des circuits reconfigurables, permettant de répondre à des besoins spécifiques et à des contraintes fortes particulièrement lorsqu'un traitement temps-réel est requis. Ce travail présente l'étude des problèmes d'ordonnancement dans les architectures hétérogènes reconfigurables basées sur des processeurs généraux (CPUs) et des circuits programmables (FPGAs). L'objectif principal est d'exécuter une application présentée sous la forme d'un graphe de précédence sur une architecture hétérogène CPU/FPGA, afin de minimiser le critère de temps d'exécution total ou makespan (Cmax). Dans cette thèse, nous avons considéré deux cas d'étude : un cas d'ordonnancement qui tient compte des délais d'intercommunication entre les unités de calcul CPU et FPGA, pouvant exécuter une seule tâche à la fois, et un autre cas prenant en compte le parallélisme dans le FPGA, qui peut exécuter plusieurs tâches en parallèle tout en respectant la contrainte surfacique. Dans un premier temps, pour le premier cas d'étude, nous proposons deux nouvelles approches d'optimisation, GAA (Genetic Algorithm Approach) et MGAA (Modified Genetic Algorithm Approach), basées sur des algorithmes génétiques. Nous proposons également de tester un algorithme par séparation et évaluation (méthode Branch & Bound). Les approches GAA et MGAA proposées offrent un très bon compromis entre la qualité des solutions obtenues (critère d'optimisation de makespan) et le temps de calcul nécessaire à leur obtention pour résoudre des problèmes à grande échelle, en comparant à la méthode par séparation et évaluation (Branch & Bound) proposée et l'autre méthode exacte proposée dans la littérature. Dans un second temps, pour le second cas d'étude, nous avons proposé et implémenté une méthode basée sur les algorithmes génétiques pour résoudre le problème du partitionnement temporel dans un circuit FPGA en utilisant la reconfiguration dynamique. Cette méthode fournit de bonnes solutions avec des temps de calcul raisonnables. Nous avons ensuite amélioré notre précédente approche MGAA afin d'obtenir une nouvelle approche intitulée MGA (Multithreaded Genetic Algorithm), permettent d'apporter des solutions au problème de partitionnement. De plus, nous avons également proposé un algorithme basé sur le recuit simulé, appelé MSA (Multithreaded Simulated Annealing). Ces deux approches proposées, basées sur les méthodes métaheuristiques, permettent de fournir des solutions approchées dans un intervalle de temps très raisonnable aux problèmes d'ordonnancement et de partitionnement sur système de calcul hétérogène === The domain of the embedded systems becomes more and more attractive in recent years with the development of increasing computationally demanding applications to which the traditional processor-based architectures (either single or multi-core) cannot always respond in terms of performance. While multiprocessor or multicore architectures have now become generalized, it is often necessary to add to them dedicated processing circuits, based in particular on reconfigurable circuits, to meet specific needs and strong constraints, especially when real-time processing is required. This work presents the study of scheduling problems into the reconfigurable heterogeneous architectures based on general processors (CPUs) and programmable circuits (FPGAs). The main objective is to run an application presented in the form of a Data Flow Graph (DFG) on a heterogeneous CPU/FPGA architecture in order to minimize the total running time or makespan criterion (Cmax). In this thesis, we have considered two case studies: a scheduling case taking into account the intercommunication delays and where the FPGA device can perform a single task at a time, and another case taking into account parallelism in the FPGA, which can perform several tasks in parallel while respecting the constraint surface. First, in the first case, we propose two new optimization approaches GAA (Genetic Algorithm Approach) and MGAA (Modified Genetic Algorithm Approach) based on genetic algorithms. We also propose to compare these algorithms to a Branch & Bound method. The proposed approaches (GAA and MGAA) offer a very good compromise between the quality of the solutions obtained (optimization makespan criterion) and the computational time required to perform large-scale problems, unlike to the proposed Branch & Bound and the other exact methods found in the literature. Second, we first implemented an updated method based on genetic algorithms to solve the temporal partitioning problem in an FPGA circuit using dynamic reconfiguration. This method provides good solutions in a reasonable running time. Then, we improved our previous MGAA approach to obtain a new approach called MGA (Multithreaded Genetic Algorithm), which allows us to provide solutions to the partitioning problem. In addition, we have also proposed an algorithm based on simulated annealing, called MSA (Multithreaded Simulated Annealing). These two proposed approaches which are based on metaheuristic methods provide approximate solutions within a reasonable time period to the scheduling and partitioning problems on a heterogeneous computing system |
author2 |
Université de Lorraine |
author_facet |
Université de Lorraine Abdallah, Fadel |
author |
Abdallah, Fadel |
author_sort |
Abdallah, Fadel |
title |
Optimization and Scheduling on Heterogeneous CPU/FPGA Architecture with Communication Delays |
title_short |
Optimization and Scheduling on Heterogeneous CPU/FPGA Architecture with Communication Delays |
title_full |
Optimization and Scheduling on Heterogeneous CPU/FPGA Architecture with Communication Delays |
title_fullStr |
Optimization and Scheduling on Heterogeneous CPU/FPGA Architecture with Communication Delays |
title_full_unstemmed |
Optimization and Scheduling on Heterogeneous CPU/FPGA Architecture with Communication Delays |
title_sort |
optimization and scheduling on heterogeneous cpu/fpga architecture with communication delays |
publishDate |
2017 |
url |
http://www.theses.fr/2017LORR0301 |
work_keys_str_mv |
AT abdallahfadel optimizationandschedulingonheterogeneouscpufpgaarchitecturewithcommunicationdelays AT abdallahfadel optimisationetordonnancementsurunearchitectureheterogenecpufpgaavecdelaisdecommunication |
_version_ |
1719192613740871680 |
spelling |
ndltd-theses.fr-2017LORR03012019-05-24T03:33:20Z Optimization and Scheduling on Heterogeneous CPU/FPGA Architecture with Communication Delays Optimisation et ordonnancement sur une architecture hétérogène CPU/FPGA avec délais de communication Algorithme génétique Problèmes d'ordonnancement Optimisation combinatoire Métaheuristiques Makespan (longueur d'ordonnancement) Programmation linéaire Système hétérogène MPSoC Parallélisme Systèmes embarqués reconfigurables Genetic algorithm Task scheduling problem Combinatorial optimization Metaheuristics Makespan (schedule length) Linear programming Heterogeneous system MPSoC Parallelism Embedded reconfigurable systems 006.22 Le domaine de l'embarqué connaît depuis quelques années un essor important avec le développement d'applications de plus en plus exigeantes en calcul auxquels les architectures traditionnelles à base de processeurs (mono/multi cœur) ne peuvent pas toujours répondre en termes de performances. Si les architectures multiprocesseurs ou multi cœurs sont aujourd'hui généralisées, il est souvent nécessaire de leur adjoindre des circuits de traitement dédiés, reposant notamment sur des circuits reconfigurables, permettant de répondre à des besoins spécifiques et à des contraintes fortes particulièrement lorsqu'un traitement temps-réel est requis. Ce travail présente l'étude des problèmes d'ordonnancement dans les architectures hétérogènes reconfigurables basées sur des processeurs généraux (CPUs) et des circuits programmables (FPGAs). L'objectif principal est d'exécuter une application présentée sous la forme d'un graphe de précédence sur une architecture hétérogène CPU/FPGA, afin de minimiser le critère de temps d'exécution total ou makespan (Cmax). Dans cette thèse, nous avons considéré deux cas d'étude : un cas d'ordonnancement qui tient compte des délais d'intercommunication entre les unités de calcul CPU et FPGA, pouvant exécuter une seule tâche à la fois, et un autre cas prenant en compte le parallélisme dans le FPGA, qui peut exécuter plusieurs tâches en parallèle tout en respectant la contrainte surfacique. Dans un premier temps, pour le premier cas d'étude, nous proposons deux nouvelles approches d'optimisation, GAA (Genetic Algorithm Approach) et MGAA (Modified Genetic Algorithm Approach), basées sur des algorithmes génétiques. Nous proposons également de tester un algorithme par séparation et évaluation (méthode Branch & Bound). Les approches GAA et MGAA proposées offrent un très bon compromis entre la qualité des solutions obtenues (critère d'optimisation de makespan) et le temps de calcul nécessaire à leur obtention pour résoudre des problèmes à grande échelle, en comparant à la méthode par séparation et évaluation (Branch & Bound) proposée et l'autre méthode exacte proposée dans la littérature. Dans un second temps, pour le second cas d'étude, nous avons proposé et implémenté une méthode basée sur les algorithmes génétiques pour résoudre le problème du partitionnement temporel dans un circuit FPGA en utilisant la reconfiguration dynamique. Cette méthode fournit de bonnes solutions avec des temps de calcul raisonnables. Nous avons ensuite amélioré notre précédente approche MGAA afin d'obtenir une nouvelle approche intitulée MGA (Multithreaded Genetic Algorithm), permettent d'apporter des solutions au problème de partitionnement. De plus, nous avons également proposé un algorithme basé sur le recuit simulé, appelé MSA (Multithreaded Simulated Annealing). Ces deux approches proposées, basées sur les méthodes métaheuristiques, permettent de fournir des solutions approchées dans un intervalle de temps très raisonnable aux problèmes d'ordonnancement et de partitionnement sur système de calcul hétérogène The domain of the embedded systems becomes more and more attractive in recent years with the development of increasing computationally demanding applications to which the traditional processor-based architectures (either single or multi-core) cannot always respond in terms of performance. While multiprocessor or multicore architectures have now become generalized, it is often necessary to add to them dedicated processing circuits, based in particular on reconfigurable circuits, to meet specific needs and strong constraints, especially when real-time processing is required. This work presents the study of scheduling problems into the reconfigurable heterogeneous architectures based on general processors (CPUs) and programmable circuits (FPGAs). The main objective is to run an application presented in the form of a Data Flow Graph (DFG) on a heterogeneous CPU/FPGA architecture in order to minimize the total running time or makespan criterion (Cmax). In this thesis, we have considered two case studies: a scheduling case taking into account the intercommunication delays and where the FPGA device can perform a single task at a time, and another case taking into account parallelism in the FPGA, which can perform several tasks in parallel while respecting the constraint surface. First, in the first case, we propose two new optimization approaches GAA (Genetic Algorithm Approach) and MGAA (Modified Genetic Algorithm Approach) based on genetic algorithms. We also propose to compare these algorithms to a Branch & Bound method. The proposed approaches (GAA and MGAA) offer a very good compromise between the quality of the solutions obtained (optimization makespan criterion) and the computational time required to perform large-scale problems, unlike to the proposed Branch & Bound and the other exact methods found in the literature. Second, we first implemented an updated method based on genetic algorithms to solve the temporal partitioning problem in an FPGA circuit using dynamic reconfiguration. This method provides good solutions in a reasonable running time. Then, we improved our previous MGAA approach to obtain a new approach called MGA (Multithreaded Genetic Algorithm), which allows us to provide solutions to the partitioning problem. In addition, we have also proposed an algorithm based on simulated annealing, called MSA (Multithreaded Simulated Annealing). These two proposed approaches which are based on metaheuristic methods provide approximate solutions within a reasonable time period to the scheduling and partitioning problems on a heterogeneous computing system Electronic Thesis or Dissertation Text en http://www.theses.fr/2017LORR0301 Abdallah, Fadel 2017-12-21 Université de Lorraine Tanougast, Camel Kacem, Imed |