Summary: | Les variations du rayonnement solaire en surface (SSR) peuvent avoir un impact significatif sur divers aspects du système climatique, et notamment sur le développement socio-économique d’un pays. Pour identifier les impacts possibles du changement climatique sur le rayonnement solaire en surface à l'échelle régionale (~ 50 km) en Afrique australe jusqu'à la fin du 21ème siècle, on a analysé les données mensuelles produites dans le cadre du projet CORDEX-Afrique sur la période 1979-2099. Ces données sont issues des sorties de 5 modèles régionaux de climat (RCM) forcés par 10 modèles globaux de climat (GCM) CMIP5, pour deux scénarios d’émissions, RCP4.5 et RCP8.5, en Afrique australe (SA) et sur une partie du SWIO (0-40°S ; 0- 60°E). Pour contribuer au projet futur proposé qui vise à approfondir l'étude des changements de SSR à l'échelle locale (~ 1 km de résolution horizontale) à l'île de la Réunion et à l'île Maurice, situées dans le Sud-ouest de l'océan Indien (SWIO), près du bord d’Est du domaine CORDEX-Afrique, des simulations climatiques ont été réalisées sur trois fenêtres temporelles de 10 ans : a) le passé 1996-2005 ; et b) le futur 2046-2055 et 2090-2099, en utilisant la version 4 du RCM RegCM (RegCM4), forcé par : 1) les réanalyses climatiques ERA-Interim (ERAINT) du centre européen pour les prévisions météorologiques à moyen terme (ECMWF) pour simuler un passé récent seulement ; et 2) deux GCMs (HadGEM2-ES et GFDL-ESM2M) de l’exercice CMIP5 de simulations du climat passé et futur pour le scénario d’émissions RCP8.5 à l’échelle régionale de 50km en Afrique australe et dans le sud-ouest de l’océan Indien (0-40°S ; 0- 100°E). L’analyse de l’impact du changement climatique sur le SSR sur la base de ces simulations reste cependant limitée, à cause de leur couverture temporelle (3 périodes de 10 ans) et du nombre de modèles (2 GCMs, 1 RCM) et de scénarios (1 RCP) utilisés. Il ressort de l’analyse des simulations de l’ensemble CORDEX-Afrique que : 1) sur la période passée récente, les GCMs forceurs surestiment généralement SSR d'environ 1 W/m2 en été austral (DJF : Décembre-Janvier-Février), et de 7,5 W/m2 en hiver austral (JJA : Juin-Juillet-Août), tandis que les RCMs, forcés par ces GCMs, sous-estiment SSR d'environ -32 W/m2 et de -14 W/m2 en été et en hiver, respectivement. 2) Les projections multi-modèles de changement de SSR simulées par les RCMs et leurs GCMs forceurs sont assez cohérentes. Les GCMs prévoient, en moyenne multi-modèles, une augmentation statistiquement significative de SSR d'environ 8 W/m2 en 2099 selon le scénario RCP4.5 et de 12 W/m2 en 2099 selon le scénario RCP8.5 sur le Centre de l’Afrique australe (SA-C), et une diminution de SSR, avec un degré de confiance élevé, d'environ -5 W/m2 en 2099 selon le scénario RCP4.5 et de -10 W/m2 en 2099 selon le scénario RCP8.5, pendant la saison DJF, en Afrique équatoriale (EA-E). Dans ces deux régions, les RCMs produisent, en moyenne multi-modèles, des tendances similaires (avec un degré de confiance élevé) à celles des GCMs, mais sur des zones d’extension spatiale plus faible que celle des GCMs. Cependant, pour la saison JJA, une augmentation de SSR, d'amplitude similaire dans les simulations GCMs et RCMs (~5 W/m2 en 2099 selon le scénario RCP4.5 et 10 W/m2 selon le scénario RCP8.5), est attendue dans la région EA-E. 3). Une diminution significative de la nébulosité (environ -6% en 2099) est attendue sur le continent sud-africain pour les GCMs comme pour les RCMs. 4) Le scénario RCP8.5 produit des changements d’amplitude supérieure de 2.5W/m2 pour les GCMs forceurs et de 5W/m2 pour les RCMs en 2099 à celle pour le scénario RCP4.5. 5). Comme pour les sorties du modèle RegCM4, les structures des biais ou des changements de SSR issu des RCMs du programme CORDEX-Afrique sont globalement corrélées avec celles de couverture nuageuse totale des RCMs. L’analyse des sorties du modèle RegCM4 indique que : ..... === Changes in Surface Solar Radiation (SSR) have the potential to significantly impact diverse aspects of the climate system, and notably the socio-economic development of any nation. To identify the possible impacts of climate change on SSR at regional scales (~50 km) over Southern Africa and the South West Indian Ocean (SA-SWIO; 0-40°S ; 0- 100°E) up to the end of the 21st century, a slice downscaling experiment consisting of simulations covering three temporal windows: a) the present 1996-2005; b) the future 2046-2055 and 2090-2099 conducted with the Regional Climate Model (RCM) RegCM version 4, driven by the European Center for Medium-range Weather Forecasting (ECMWF) ERA-Interim reanalysis (ERAINT, only present) and 2 Global Climate Model (GCMs: HadGEM2-ES and GFDL-ESM2M) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under RCP8.5 scenario, are performed and evaluated. Since the slice simulation is of limited temporal coverage, number of regional and driven global models and climate change forcings, mainly because of the limit of available computational resources, the study towards a comprehensive knowledge of SSR changes in context of climate change is thus extended: an ensemble consisting of outputs from 20 regional climate downscaling realisations based on 5 RCMs that participated in the Coordinated Regional Downscaling Experiment (CORDEX) program (CORDEX-Africa) along with their 10 driving GCMs from CMIP5 covering southern Africa (0-40°S; 0- 100°E) during the period of 1990-2099 is analyzed under RCP4.5 and RCP8.5 up to 2099.The slice experiment indicates that 1) RegCM4 simulates present-day seasonal climatology, (surface air temperature, precipitation and SSR) quite well, but has a negative total cloud cover bias (about -20% in absolute percentage) when forced by the ERAINT and the two GCMs. 2) Internal variability of RegCM4-simulated annual means SSR (about 0.2 W/m2) is of one order smaller than the model bias compared with reference data. 3) RegCM4 simulates SSR changes in opposite signs when driven by the different GCMs under RCP8.5 scenario. 4) Electricity potential calculated using first-order estimation based on the RegCM simulations indicates a change less then 2% to 2099 with respect on present level.It is also found from the ensemble study that: 1) GCMs ensemble generally overestimates SSR by about 1 W/m2 in austral summer (December, January, and February, short as DJF) and 7.5 W/m2 in austral winter (June, July and August, short as JJA), while RCMs ensemble mean shows underestimations of SSR by about -32 W/m2 and -14 W/m2 in summer and winter seasons respectively when driven by GCMs. 2) Multi-model mean projections of SSR change patterns simulated by the GCMs and their embedded RCMs are fairly consistent. 3) GCMs project, in their multi-model means, a statistically significant increase of SSR of about 8 W/m2 in RCP4.5 and 12 W/m2 in RCP8.5 by 2099 over Centre Southern Africa (SA-C) and a highly confident decreasing SSR over Eastern Equatorial Africa (EA-E) of about -5 W/m2 in RCP4.5 and -10 W/m2 in RCP8.5 during the DJF season. RCMs simulate SSR change with statistical confidence over SA-C and EA-E area as well with a little spatial extension compared to GCMs. However, in the JJA season, an increase of SSR is found over EA-E of about 5 W/m2 by 2099 under RCP4.5 and 10 W/m2 under RCP8.5, of similar amplitudes in both the GCMs and RCMs simulations. 4) Significant cloudiness decrease (about -6 % to 2099) is found over continent of SA for GCMs and also shown in RCMs. 5) Larger SSR changes are found in the RCP8.5 scenario than in the RCP4.5 scenario in 2099, with about 2.5 W/m2 enhanced changes in GCMs and about 5 W/m2 in RCMs. 6) Either the biases or the changes pattern of SSR are overall correlated with the patterns of total cloud cover from RCMs in CORDEX-Africa program (for RegCM4 as well). The slice experiment indicates that ...
|